Thermodynamic evaluators#
Internal energy, enthalpy, thermal conductivity, etc used for both surface and subsurface transport of energy.
Internal energy#
Computes (specific) internal energy of as a function of temperature.
“evaluator type” = “iem”
iem-evaluator-spec
“IEM parameters”
[IEM-model-typedinline-spec-list]
KEYS:
“temperature”
Linear#
Internal energy based on a linear fit.
Linear internal energy model – function of Cv and temperature
“IEM type” = “linear”
IEM-model-linear-spec
“reference temperature [K]”
[double]
273.15 The phase transition point, T_ref above
ONE OF
“latent heat [J kg^-1]”
[double]
Latent heat of fusion, L_f above“heat capacity [J kg^-1 K^-1]”
[double]
C_v above
OR
“latent heat [J mol^-1]”
[double]
Latent heat of fusion, L_f above.“heat capacity [J mol^-1 K^-1]”
[double]
C_v above
END
Quadratic#
Internal energy based on a quadratic fit to data.
Quadratic internal energy model – function of Cv and temperature
“IEM type” = “quadratic”
IEM-model-quadratic-spec
“reference temperature [K]”
[double]
273.15 The phase transition point, T_ref above.
ONE OF
“latent heat [J kg^-1]”
[double]
Latent heat of fusion, L_f above“heat capacity [J kg^-1 K^-1]”
[double]
C_v above“quadratic b [J kg^-1 K^-2]”
[double]
b above
OR
“latent heat [J mol^-1]”
[double]
Latent heat of fusion, L_f above.“heat capacity [J mol^-1 K^-1]”
[double]
C_v above“quadratic b [J mol^-1 K^-2]”
[double]
b above
END
Water Vapor#
Computes (specific) internal energy of as a function of temperature and molar fraction of water vapor in the gaseous phase.
“evaluator type” = “iem water vapor”
iem-water-vapor-evaluator-spec
“IEM parameters”
[IEM-water-vapor-model-spec]
KEYS:
“temperature”
“vapor molar fraction”
Internal energy model for air and water vapor.
iem-water-vapor-model-spec
“latent heat [J mol^-1]”
[double]
Latent heat of vaporization“heat capacity [J mol^-1 K^-1]”
[double]
C_v
Enthalpy#
Computes enthalpy [MJ / mol] of as a function of internal energy, pressure, and density.
“evaluator type” = “enthalpy”
enthalpy-evaluator-spec
“include work term”
[bool]
false If false, e = u, ignoring the work term.
KEYS:
“internal energy”
“pressure”
“mass density”
Thermal Conductivity, two phases#
Thermal conductivity based on two-phases (air,liquid) composition of the porous media.
“evaluator type” = “two-phase thermal conductivity”
thermal-conductivity-twophase-evaluator-spec
“thermal conductivity parameters”
[thermal-conductivity-twophase-typedinline-spec-list]
KEYS:
“porosity”
“saturation liquid”
Wet-Dry Model#
Simple model of two-phase thermal conductivity, based upon:
Interpolation between saturated and dry conductivities via a Kersten number.
Power-law Kersten number.
“thermal conductivity type” = “two-phase wet/dry”
thermal-conductivity-twophase-wetdry-spec
“region”
[string]
Region name on which to apply these parameters.“thermal conductivity, wet [W m^-1 K^-1]”
[double]
Thermal conductivity of saturated soil“thermal conductivity, dry [W m^-1 K^-1]”
[double]
Thermal conductivity of dry soil“unsaturated alpha [-]”
[double]
Interpolating exponent“epsilon”
[double]
1e-10 Epsilon to keep saturations bounded away from 0.
Example:
<ParameterList name="thermal conductivity model">
<Parameter name="thermal conductivity type" type="string" value="two-phase wet/dry"/>
<Parameter name="thermal conductivity, wet [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="thermal conductivity, dry [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="epsilon" type="double" value="1.e-10"/>
<Parameter name="unsaturated alpha" type="double" value="1.0"/>
</ParameterList>
Units: [W m^-1 K^-1]
Peters-Lidard Model#
A two-phase thermal conductivity, based upon:
Interpolation between saturated and dry conductivities via a Kersten number.
Power-law Kersten number.
Emperical fit for dry conductivity from Peters-Lidard et al ‘98.
See Atchley et al GMD 2015 Supplementary Material for equations.
“thermal conductivity type” = “two-phase Peters-Lidard”
thermal-conductivity-twophase-peterslidard-spec
“region”
[string]
Region name on which to apply these parameters.“thermal conductivity of soil [W m^-1 K^-1]”
[double]
Thermal conductivity of soil grains (not bulk soil)“thermal conductivity of liquid [W m^-1 K^-1]”
[double]
Thermal conductivity of liquid (water)“thermal conductivity of gas [W m^-1 K^-1]”
[double]
Thermal conductivity of gas (air)“unsaturated alpha [-]”
[double]
Interpolating exponent“epsilon”
[double]
1e-10 Epsilon to keep saturations bounded away from 0.
Example:
<ParameterList name="Thermal Conductivity Model">
<Parameter name="thermal conductivity type" type="string" value="two-phase Peters-Lidard"/>
<Parameter name="thermal conductivity of soil [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="thermal conductivity of liquid [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="thermal conductivity of gas [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="unsaturated alpha" type="double" value="1.0"/>
<Parameter name="epsilon" type="double" value="1.e-10"/>
</ParameterList>
Units: [W m^-1 K^-1]
Thermal Conductivity, three phases#
Thermal conductivity based on a three-phase (air,liquid,ice) composition of the porous media.
“evaluator type” = “three-phase thermal conductivity”
thermal-conductivity-threephase-evaluator-spec
“thermal conductivity parameters”
[thermal-conductivity-threephase-typedinline-spec-list]
KEYS:
“porosity”
“saturation liquid”
“second saturation”
“temperature”
Wet-Dry Model#
Three-phase thermal conductivity based on paper by Peters-Lidard.
A three-phase thermal conductivity, based upon:
Interpolation between saturated and dry conductivities via a Kersten number.
Power-law Kersten number.
Empirical relationship for frozen soil based on Peters-Lidard
See Atchley et al GMD 2015 Supplementary Material for equations.
“thermal conductivity type” = “three-phase wet/dry”
thermal-conductivity-threephase-wetdry-spec
“region”
[string]
Region name on which to apply these parameters.“thermal conductivity, saturated (unfrozen) [W m^-1 K^-1]”
[double]
Thermal conductivity of fully saturated, unfrozen bulk soil.“thermal conductivity, dry [W m^-1 K^-1]”
[double]
Thermal conductivity of fully dried bulk soil.“unsaturated alpha unfrozen [-]”
[double]
Interpolating exponent“unsaturated alpha frozen [-]”
[double]
Interpolating exponent“saturated beta frozen [-]”
[double]
1.0 Interpolating exponent“epsilon”
[double]
1e-10 Epsilon to keep saturations bounded away from 0.
Peters-Lidard Model#
Three-phase thermal conductivity based on paper by Peters-Lidard.
A three-phase thermal conductivity, based upon:
A mixture model using interpolation across various components.
Power-law Kersten number.
See Atchley et al GMD 2015 Supplementary Material for equations.
“thermal conductivity type” = “three-phase Peters-Lidard”
thermal-conductivity-threephase-peterslidard-spec
“region”
[string]
Region name on which to apply these parameters.“thermal conductivity of soil [W m^-1 K^-1]”
[double]
Thermal conductivity of soil grains (not bulk soil)“thermal conductivity of liquid [W m^-1 K^-1]”
[double]
Thermal conductivity of liquid (water)“thermal conductivity of gas [W m^-1 K^-1]”
[double]
Thermal conductivity of gas (air)“thermal conductivity of ice [W m^-1 K^-1]”
[double]
Thermal conductivity of ice“unsaturated alpha unfrozen [-]”
[double]
Interpolating exponent“unsaturated alpha frozen [-]”
[double]
Interpolating exponent“epsilon”
[double]
1e-10 Epsilon to keep saturations bounded away from 0.
Example:
<ParameterList name="thermal_conductivity">
<Parameter name="thermal conductivity type" type="string" value="three-phase Peters-Lidard"/>
<Parameter name="thermal conductivity of soil [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="thermal conductivity of liquid [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="thermal conductivity of gas [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="thermal conductivity of ice [W m^-1 K^-1]" type="double" value=""/>
<Parameter name="unsaturated alpha unfrozen [-]" type="double" value=""/>
<Parameter name="unsaturated alpha frozen [-]" type="double" value=""/>
<Parameter name="epsilon" type="double" value="1.e-10"/>
</ParameterList>
Volume-averaged Model#
A volume-averaged thermal conductivity based on TCs of raw components.
A simple model of three-phase thermal conductivity, based upon volume-averaging of four consitutive components.
“thermal conductivity type” = “three-phase volume averaged”
See Atchley et al GMD 2015 Supplementary Material for equations.
thermal-conductivity-volume-averaged-spec
“region”
[string]
Region name on which to apply these parameters.“thermal conductivity of soil [W m^-1 K^-1]”
[double]
Thermal conductivity of soil grains“thermal conductivity of liquid [W m^-1 K^-1]”
[double]
Thermal conductivity of liquid water.“thermal conductivity of gas [W m^-1 K^-1]”
[double]
Thermal conductivity of air.“thermal conductivity of ice [W m^-1 K^-1]”
[double]
Thermal conductivity of frozen water.
Sutra-ICE model#
Thermal conductivity model with constant values as a function of temperature, requires the sutra model for permafrost WRM to also be used. This only exists to support the INTERFROST comparison.
Usage:
<ParameterList name="Thermal Conductivity Model">
<Parameter name="Thermal Conductivity Type" type="string" value="sutra hacked"/>
<Parameter name="thermal conductivity of frozen" type="double" value=""/>
<Parameter name="thermal conductivity of mushy" type="double" value=""/>
<Parameter name="thermal conductivity of unfrozen" type="double" value=""/>
<Parameter name="residual saturation" type="double" value=""/>
</ParameterList>
Units: [W m^-1 K^-1]
Thermal Conductivity, Surface#
Thermal conductivity of surface water that can be either frozen or liquid phase.
“evaluator type” = “surface thermal conductivity”
thermal-conductivity-surface-evaluator-spec
“thermal conductivity parameters”
[thermal-conductivity-surface-spec]
KEYS:
“unfrozen fraction”
“ponded depth”
thermal-conductivity-surface-spec
“thermal conductivity of water [W m^-1 K^-1]”
[double]
0.58“thermal conductivity of ice [W m^-1 K^-1]”
[double]
2.18“minimum thermal conductivity”
[double]
1.e-14
Advected Energy Source#
Active Layer Averaged Temperature#
Water Table#
Computes the depth to a saturated water table.
“evaluator type” = “water table depth”
water-table-depth-spec
KEYS:
“saturation of gas” SUBSURFACE_DOMAIN-saturation-gas
“subsurface cell volume” SUBSURFACE_DOMAIN-cell_volume
“surface cell volume” DOMAIN-cell_volume
Thaw Depth#
Computes the depth to a saturated water table.
“evaluator type” = “thaw depth”
thaw-depth-spec
KEYS:
“temperature” SUBSURFACE_DOMAIN-temperature
“subsurface cell volume” SUBSURFACE_DOMAIN-cell_volume
“surface cell volume” DOMAIN-cell_volume