Subsurface flow evaluators#
Assorted evaluators used for subsurface flow processes, including water retention curves, compressible pore space, relative permeability, and their frozen equivalents.
Many of these evaluators show up in nearly all ATS simulations, as subsurface flow of water is the core process underlying all of ATS physics. For real examples, see ats-demos
Capillary pressure#
Capillary pressure for gas on a liquid.
pc-liquid-evaluator-spec
KEYS:
“pressure” DOMAIN-pressure
Capillary pressure of liquid on ice#
Water Retention Model and Relative Permeability#
Evaluates saturation through water retention models.
Water Retention Models (WRMs) determine the saturation as a function of pressure and the relative permeability as a function of saturation. Most commonly used in practice is the van Genuchten model, but others are available default default;
“evaluator type” = “wrm”
wrm-evaluator-spec
“model parameters”
[string]
List (by region) of WRM specs. This will copy “WRM parameters” given in “model parameters” under state here to evaluate WRM.
KEYS:
“saturation” determined from evaluator name The name of the liquid saturation – typically this is determined from the evaluator name and need not be set.
“other saturation” determined from evaluator name The name of the other saturation, usually gas – typically this is determined from the evaluator name and need not be set.
“capillary pressure”` DOMAIN-capillary_pressure_gas_liq The name of the capillary pressure.
Example:
<ParameterList name="PKs" type="ParameterList">
...
<ParameterList name="flow" type="ParameterList">
...
<ParameterList name="water retention evaluator" type="ParameterList">
<Parameter name="minimum rel perm cutoff" type="double" value=" 0" />
<Parameter name="use surface rel perm" type="bool" value="true" />
<Parameter name="model parameters" type="string" value="WRM parameters" />
...
</ParameterList>
...
</ParameterList>
...
</ParameterList>
<ParameterList name="state" type="ParameterList">
<ParameterList name="model parameters" type="ParameterList">
<ParameterList name="WRM parameters" type="ParameterList">
<ParameterList name="domain" type="ParameterList">
<Parameter name="region" type="string" value="domain" />
<Parameter name="wrm type" type="string" value="van Genuchten" />
<Parameter name="van Genuchten alpha [Pa^-1]" type="double" value="2e-05" />
<Parameter name="van Genuchten n [-]" type="double" value="1.58" />
<Parameter name="residual saturation [-]" type="double" value="0.2" />
<Parameter name="smoothing interval width [saturation]" type="double" value="0.05" />
<Parameter name="dessicated zone thickness [m]" type="double" value="0.1" />
</ParameterList>
</ParameterList>
</ParameterList>
...
</ParameterList>
A collection of WRMs along with a Mesh Partition.
A WRM partition is a list of (region, WRM) pairs, where the regions partition the mesh.
wrm-partition-typedinline-spec
“region”
[string]
Region on which the WRM is valid.“WRM type”
[string]
Name of the WRM type.“_WRM_type_ parameters”
[_WRM_type_-spec]
See below for the required parameter spec for each type.
Evaluates relative permeability using water retention models.
Uses a list of regions and water retention models on those regions to evaluate relative permeability, typically as a function of liquid saturation.
Most of the parameters are provided to the WRM model, and not the evaluator. Typically these share lists to ensure the same water retention curves, and this one is updated with the parameters of the WRM evaluator. This is handled by flow PKs.
Some additional parameters are available.
“evaluator type” = “relative permeability, van Genuchten”
rel-perm-evaluator-spec
“use density on viscosity in rel perm”
[bool]
true“boundary rel perm strategy”
[string]
boundary pressure Controls how the rel perm is calculated on boundary faces. Note, this may be overwritten by upwinding later! One of:“boundary pressure” Evaluates kr of pressure on the boundary face, upwinds normally.
“interior pressure” Evaluates kr of the pressure on the interior cell (bad idea).
“harmonic mean” Takes the harmonic mean of kr on the boundary face and kr on the interior cell.
“arithmetic mean” Takes the arithmetic mean of kr on the boundary face and kr on the interior cell.
“one” Sets the boundary kr to 1.
“surface rel perm” Looks for a field on the surface mesh and uses that.
“minimum rel perm cutoff”
[double]
0. Provides a lower bound on rel perm.“permeability rescaling”
[double]
Typically rho * kr / mu is very big and K_sat is very small. To avoid roundoff propagation issues, rescaling this quantity by offsetting and equal values is encourage. Typically 10^7 or so is good.“model parameters”
[string]
WRM parameters[WRM-typedinline-spec-list]
List (by region) of WRM specs. This will copy “WRM parameters” given in “model parameters” under state here to evaluate relative permeability. If use “WRM parameters”, both WRM and relative permeability evaluators use the same set of “WRM parameters”, which can be van Genuchten or Brooks-Corey. If use a customed name, e.g., “relative permeability parameters”, and declare “relative permeability parameters” in “model parameters” under state, this allows to use different models for WRM (by default through “WRM parameters”) and relative permeability.
KEYS:
“rel perm”
“saturation_liquid”
“density” (if “use density on viscosity in rel perm” == true)
“viscosity” (if “use density on viscosity in rel perm” == true)
“surface relative permeability” (if “boundary rel perm strategy” == “surface rel perm”)
Example 1: Using the same set of van Genuchten model paramters for WRM and relative permeability
<ParameterList name="PKs" type="ParameterList">
...
<ParameterList name="flow" type="ParameterList">
...
<ParameterList name="water retention evaluator" type="ParameterList">
<Parameter name="model parameters" type="string" value="WRM parameters" />
...
</ParameterList>
...
</ParameterList>
...
</ParameterList>
<ParameterList name="state" type="ParameterList">
<ParameterList name="model parameters" type="ParameterList">
<ParameterList name="WRM parameters" type="ParameterList">
<ParameterList name="domain" type="ParameterList">
<Parameter name="region" type="string" value="domain" />
<Parameter name="wrm type" type="string" value="van Genuchten" />
<Parameter name="van Genuchten alpha [Pa^-1]" type="double" value="2e-05" />
<Parameter name="van Genuchten n [-]" type="double" value="1.58" />
<Parameter name="residual saturation [-]" type="double" value="0.2" />
<Parameter name="smoothing interval width [saturation]" type="double" value="0.05" />
<Parameter name="dessicated zone thickness [m]" type="double" value="0.1" />
</ParameterList>
</ParameterList>
</ParameterList>
<ParameterList name="evaluators" type="ParameterList">
<ParameterList name="relative_permeability" type="ParameterList">
<Parameter name="evaluator type" type="string" value="relative permeability, van Genuchten" />
<Parameter name="model parameters" type="string" value="WRM parameters" />
<Parameter name="use surface rel perm" type="bool" value="true" />
<Parameter name="minimum rel perm cutoff" type="double" value=" 0" />
</ParameterList>
...
</ParameterList>
...
</ParameterList>
Example 2: Using different set of model/paramters for WRM and relative permeability, van Genuchten for WRM and Brooks-Corey for relative permeability. Note that in this case, van Genuchten parameters and Brooks-Corey parameters need to be consistent. Using tool “convert_parameters_vg2bc.py” to convert van Genuchten parameters to Brooks-Corey parameters.
<ParameterList name="PKs" type="ParameterList">
...
<ParameterList name="flow" type="ParameterList">
...
<ParameterList name="water retention evaluator" type="ParameterList">
<Parameter name="model parameters" type="string" value="WRM parameters" />
...
</ParameterList>
...
</ParameterList>
...
</ParameterList>
<ParameterList name="state" type="ParameterList">
<ParameterList name="model parameters" type="ParameterList">
<ParameterList name="WRM parameters" type="ParameterList">
<ParameterList name="domain" type="ParameterList">
<Parameter name="region" type="string" value="domain" />
<Parameter name="wrm type" type="string" value="van Genuchten" />
<Parameter name="van Genuchten alpha [Pa^-1]" type="double" value="2e-05" />
<Parameter name="van Genuchten n [-]" type="double" value="1.58" />
<Parameter name="residual saturation [-]" type="double" value="0.2" />
<Parameter name="smoothing interval width [saturation]" type="double" value="0.05" />
<Parameter name="dessicated zone thickness [m]" type="double" value="0.1" />
</ParameterList>
</ParameterList>
<ParameterList name="relative permeability parameters" type="ParameterList">
<ParameterList name="domain" type="ParameterList">
<Parameter name="region" type="string" value="domain" />
<Parameter name="wrm type" type="string" value="Brooks-Corey" />
<Parameter name="Brooks-Corey lambda [-]" type="double" value="0.49" />
<Parameter name="Brooks-Corey saturted matric suction [Pa]" type="double" value="32439.03" />
<Parameter name="residual saturation [-]" type="double" value="0.2" />
<Parameter name="smoothing interval width [saturation]" type="double" value="0.05" />
</ParameterList>
</ParameterList>
</ParameterList>
<ParameterList name="evaluators" type="ParameterList">
<ParameterList name="relative_permeability" type="ParameterList">
<Parameter name="evaluator type" type="string" value="relative permeability, van Genuchten" />
<Parameter name="model parameters" type="string" value="relative permeability parameters" />
<Parameter name="use surface rel perm" type="bool" value="true" />
<Parameter name="minimum rel perm cutoff" type="double" value=" 0" />
</ParameterList>
...
</ParameterList>
...
</ParameterList>
Van Genuchten Model#
WRMVanGenuchten : water retention model using van Genuchten’s parameterization
van Genuchten’s water retention curve.
WRM-van-Genuchten-spec
“region”
[string]
Region to which this applies“van Genuchten alpha [Pa^-1]”
[double]
van Genuchten’s alpha
ONE OF:
“van Genuchten n [-]”
[double]
van Genuchten’s n
OR
“van Genuchten m [-]”
[double]
van Genuchten’s m, m = 1 - 1/n
END
“residual saturation [-]”
[double]
0.0“smoothing interval width [saturation]”
[double]
0.0“Mualem exponent l [-]”
[double]
0.5“Krel function name”
[string]
Mualem “Mualem” or “Burdine”
Example:
<ParameterList name="moss" type="ParameterList">
<Parameter name="region" type="string" value="moss" />
<Parameter name="WRM type" type="string" value="van Genuchten" />
<Parameter name="van Genuchten alpha [Pa^-1]" type="double" value="0.002" />
<Parameter name="van Genuchten m [-]" type="double" value="0.2" />
<Parameter name="residual saturation [-]" type="double" value="0.0" />
<Parameter name="smoothing interval width [saturation]" type="double" value=".05" />
</ParameterList>
Linear Model#
A linear sat-pc curve.
A linear sat-pc curve, plus a constant rel perm, makes the system linear, so nonlinear solver should always converge in one step.
No error-checking, so the user is responsible for ensuring that the pressure is always less than atmospheric and within the acceptable range of the slope.
Note this is mostly for testing.
Water Retention Model for Freeze-Thaw#
Original Implicit model#
Painter’s original, implicitly defined permafrost model.
wrm-implicit-permafrost-spec
“converged tolerance”
[double]
1.e-12 Convergence tolerance of the implicit solve.“max iterations”
[int]
100 Maximum allowable iterations of the implicit solve.“solver algorithm [brent]”
[string]
brent Only brent is currently supported.
Freezing point depression model#
Freezing point depression, smoothed model#
Painter’s permafrost model with freezing point depression, smoothed.
wrm-fpd-smoothed-permafrost-spec
“reference temperature [K]”
[double]
273.15 The phase transition point“interfacial tension ice-water [mN m^-1]”
[double]
33.1“interfacial tension air-water [mN m^-1]”
[double]
72.7“smoothing width [K]”
[double]
1. Smoothing out the freeze curve allows this to be slightly easier to solve.“latent heat [J kg^-1]”
[double]
3.34e5 Latent heat of fusion“water density [kg m^-3]”
[double]
998.87 Density of water. Note this probably should use the calculated value.
Interfrost model#
Sutra-ICE model#
This model is based on the emperical freezing curve used by Sutra-Ice, documented in papers by Voss & Walvoord.
wrm-sutra-permafrost-model-spec
“temperature transition [K]”
[double]
thickness of the transition from frozen to thawed“residual saturation [-]”
[double]
Standard residual saturation“freezing point [K]”
[double]
273.15
Compressible porosity#
Compressible grains are both physically realistic (based on bulk modulus) and a simple way to provide a non-elliptic, diagonal term for helping solvers to converge.
“evaluator type” = “compressible porosity”
compressible-porosity-evaluator-spec
“compressible porosity model parameters”
[compressible-porosity-standard-model-spec-list]
KEYS:
“pressure” DOMAIN-pressure
“base porosity” DOMAIN-base_porosity
Standard model#
A simple model for allowing porosity to vary with pressure.
Based on a linear increase, i.e.
where \(H\) is the heaviside function and \(\alpha\) is the provided compressibility. If the inflection point is set to zero, the above function is exact. However, then the porosity function is not smooth (has discontinuous derivatives), so the inflection point smooths this with a quadratic that matches the value and derivative at the inflection point and is 0 with 0 slope at atmospheric pressure.
compressible-porosity-standard-model-spec
“region”
[string]
Region on which this is applied.“pore compressibility [Pa^-1]”
[double]
\(\alpha\) as described above“pore compressibility inflection point [Pa]”
[double]
1000
The inflection point above which the function is linear.
Example:
<ParameterList name="soil" type="ParameterList">
<Parameter name="region" type="string" value="soil" />
<Parameter name="pore compressibility [Pa^-1]" type="double" value="1.e-9" />
<Parameter name="pore compressibility inflection point [Pa]" type="double" value="1000." />
</ParameterList>
Exponential model#
The Leinjnse model is an exponential model of porosity as a function of pressure, based on (insert citation!):
where \(\alpha\) is the provided compressibility, and \(\delta\) is the cutoff (inflection point).
If the inflection point is set to zero, the above function is exact. However, then the porosity function is not smooth (has discontinuous derivatives).
compressible-porosity-leijnse-model-spec
“pore compressibility [Pa^-1]”
[double]
\(\alpha\) as described above“pore compressibility inflection point [Pa]”
[double]
1000 The inflection point above which the function is linear.
NOTE: additionally the user should provide a parameter in the `EWC Globalization Delegate`_ to turn Leijnse model ON in the EWC calculations.
<Parameter name="porosity leijnse model" type="bool" value="true"/>
Viscosity of water#
Two main viscosity models are commonly used – a constant and one which is temperature-dependent. The viscosity of water is strongly temperature dependent, so it is highly recommended to use that one if the problem is nonisothermal.
Constant#
Like any quantity, a viscosity can simply be a constant value, at which point it is not a secondary variable but an independent variable.
<ParameterList name="viscosity_liquid" type="ParameterList">
<Parameter name="field evaluator type" type="string" value="independent variable constant" />
<Parameter name="value" type="double" value="8.9e-4" />
<Parameter name="units" type="string" value="Pa s" />
</ParameterList>
Nonisothermal#
A non-isothermal viscosity model intended for use within a range of temperatures from well below freezing to ~100C.
viscosity-evaluator-spec
“viscosity model parameters”
[viscosity-typedinline-spec-list]
KEYS:
“temperature”
A constitutive relation for the viscosity of water as a function of temperature in K, given as an empirical series expansion fit to data.
Used by setting
“viscosity relation type” = “liquid water”
viscosity-water-spec
NONE