
AMANZI-SRD, Revision 1.0

Amanzi Theory Guide,
Mathematical Modeling Requirements

November 20, 2024

United States Department of Energy

V. Gyrya, LANL K. Lipnikov, LANL D. Moulton, LANL S. Molins, LBNL
C. Steefel, LBNL

LA-UR-20-22486



Amanzi: Theory Guide

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government.
Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or
their employees, makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use
or results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned
rights; or

3. endorsement or recommendation of any specifically identified commercial product,
process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect
those of the United States Government, or its contractors, or subcontractors.

2 ascemdoe.org November 20, 2024

This version of the Software Requirements Document (SRD) is based on the “Mathe-
matical Formulation Requirements and Specification for the Process Models”, version
ASCEM-HPC-2011-01-0c, which was developed for the by ASCEM project by:

C. Steefel, LBNL P. Lichtner, LANL J. Bell, LBNL G. Zyvoloski, LANL
D. Moulton, LANL T. Woley, LLNL G. Moridis, LBNL B. Andre, LBNL
G. Pau, LBNL D. Bacon, PNNL S. Yabusaki L. Zheng, LBNL
K. Lipnikov, LANL N. Spycher, LBNL E. Sonnenthal, LBNL J. Davis, LBNL
J. Meza, LBNL



Amanzi: Theory Guide

Table of Contents

3 ascemdoe.org November 20, 2024



Amanzi: Theory Guide

List of Tables

List of Figures

4 ascemdoe.org November 20, 2024



Amanzi: Theory Guide

1 Introduction to Process Models Requirements

1.1 Overview

NEEDS TO BE WRITTEN

1.2 Purpose and Scope of this Document

At the highest level of the HPC Simulator design is a set of process models that mathematically rep-
resent the physical, chemical, and biological phenomena controlling contaminant release into, and
transport in, the subsurface. The objective of this requirements document is to provide a catalogue
of process models, along with their detailed mathematical formulation, for potential implemen-
tation in the HPC Simulator. This concise mathematical description and accompanying analysis,
provides critical information for requirements and design of both the HPC Core Framework (Task
1.1.2.2) and the HPC Toolsets (Task 1.1.2.3).

It is important to note that with its focus on mathematical descriptions for a catalogue of process
models, this requirements document is significantly different from a traditional Software Require-
ments Specification (SRS) document. Hence, this document does not follow the IEEE Std 830-
1998 template, and instead uses a process category based layout that is summarized in Section ??.
Moreover, this mathematical focus serves multiple audiences:

1. This document provides guidance to the developers engaged in designing and implementing
the HPC Core Framework and HPC Toolsets. To meet their needs, sufficient detail for each
process model is provided in the form of a background discussion, supporting equations, and
references to relevant literature.

2. The document is also intended for “domain scientists” whose primary interest is in the pro-
cesses themselves. The presentation is intended to justify the choice of process models and
their mathematical detail.

3. Finally, the document is also intended for end users engaged in individual site applications.

Over time this document will evolve into a comprehensive graded presentation of models, from
complex to simple, under a general mathematical framework for each process category. Evolution
of the list of processes is inevitable, and the modular design of the HPC Simulator will easily
accommodate the addition of new process implementations.

1.3 Organization and Layout of this Document

The remainder of this document is organized based on individual process category. These include
presentation of Isothermal Flow Processes in Section ??, Thermal Processes in Section ??, Trans-
port Processes in Section ??, and Biogeochemical Reaction Processes in Section ??. Each of these
process categories may present multiple process models.
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In Section ??, Isothermal Flow Processes, we consider models of fluid flow at constant tempera-
ture. We limit ourselves to the case of a single fluid phase, i.e. no water-oil flows. Based on the
saturation levels we use one of two models: fully saturated and partially saturated flows. Further,
use of Richards Equation requires certain assumptions on the gas phase not moving.

In Section ??, Thermal Processes, we discuss extension of the models of Section ?? to the case of
changing temperature by adding a concervation of energy equation.

In Section ??, Transport Processes, we consider models for transport, i.e. evolution of distribu-
tions, of solute species. Each of the species can be part of either gas, fluid or solid phase. In the
solid phase specied do not move. In the gas phase species can only diffuse (due to the assumptions
of Richards equation). In the fluid phase the transport of the species is affected by the fluid flow as
well as dispersion and diffusion processes. In this section we also consider a dual porocity models,
designed to capture the difference in fluid motion in the cracks and pores.

In Section ??, Biogeochemical Reaction Processes, we consider a variety of biochemical reaction
processes, which from the point of view of model equations convert one species into others and
result in various heat sources.

The notational conventions and variables used throughout the document are summarized in Sec-
tion ??.

1.4 Variables and Notations

In this section we list all the variables used throughout the rest of the document. In particular, for
multiple variables we use subscript l, s and g to indicate that the particular quantity is the property
of the liquid, solid or gas, respectively. We also use subscripts m and f to indicate quantities that
are attributed to the matrix/pores and fracture, respectively.

Table 1: List of global variables.

Symbol Meaning Units
Ci concentration of ith species mol ·m−3

el enthalpy of the liquid m
g gravity vector m · s−2

g gravity magnitude m · s−2

h hydrolic head m
J generic flux mol ·m−2 · s−1

K absolute permeability tensor m2

krl relative permeability −
pl liquid pressure Pa
q Darcy velocity m · s−1

Ss specific storage m−1

Sy specific yield −
sl liquid saturation −

Continued on next page
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Table 1 – Continued
Symbol Meaning Units

ul internal energy of the liquid kg ·m2 · s−2

ur internal energy of the rock kg ·m2 · s−2

µl liquid viscosity Pa · s
ρl liquid density kg ·m−3

ϕ porosity −
ϕf porosity of fracture −
ϕm porosity of matrix −
ηl molar liquid density mol ·m−3

θ volumetric water content mol ·m−3

θf volumetric water content of fracture mol ·m−3

θm volumetric water content of matrix mol ·m−3
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2 Isothermal Flow Processes

2.1 Overview

Subsurface flow simulations typically assume that Darcy’s law is valid. As this law gives a re-
lationship between velocity and pressure, it essentially replaces the momentum equation. There
has been much research to support the validity of Darcy’s Law (?). Most references give the ap-
plicability of Darcy’s Law to be for laminar flows with Reynolds numbers less that 10 using the
pore throat diameter for a soil. There has been some effort to include inertial as well as turbulence
effects that can occur near the wells.

It is also assumed that thermodynamic equilibrium (mechanical and thermal) exists for each grid
block. Sub-grid scale features often play a prominent role in multi-fluid simulations. Faults and
fractures will likely be fast paths for contaminant transport and can effectively be treated with mul-
tiple porosity models. Similarly, rate-limited diffusion from clay inclusions can also be modeled
with a multiple porosity material.

2.2 Fully Saturated Flow

The most basic flow model is a single-phase fully saturated flow in a porous medium. Notwith-
standing its simplicity, it has a wide application to describing subsurface processes.

2.2.1 Assumptions and Applicability

There are many assumptions required for the strict validity of Darcy’s Law, including

• incompressibility and

• laminararity of the flow.

We also assume that

• solid/rock is incompressible,

• fluid viscosity is constant,

• there are no fractures, only pores.

2.2.2 Process Model Equations

Under the above assumptions fully saturated flow is governed by(
Ss
g

+
Sy
Lg

)
∂pl
∂t

= −∇ · (ρlql) +Q, (2.1a)

ql = −K
µl
(∇pl − ρlg), (2.1b)
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where the primary variable is the fluid presure pl [Pa]. The fluid velocity ql [m · s−1] is the de-
pendent variable. All the other variables can be treated as material parameters that sometimes may
depend on pressure. These include: Ss [m−1] and Sy [-] are specific storage and yeild, respectively,
g [m · s−2] is the gravitational constant and g [m · s−2] is the gravitational vector, L [m] is a char-
acteristic size of the yield layer, K [m2] is an absolute permeability tensor, and Q [kg ·m−3 · s−1]
is source or sink term.

It is common to see the Darcy Law written in terms of hydraulic head h and the hydraulic conduc-
tivity tensor Kh:

ql = −Kh∇h, (2.2a)

h = z +
pl
ρlg

, (2.2b)

Kh = K
ρlg

µl
. (2.2c)

2.2.3 Boundary conditions

Three types of boundary conditions are supported by the model:

1. prescribed pressure pl (or head), see (??);

2. prescribed flux, i.e. normal component of the velocity ql, see (??);

3. semipervious boundary, see (??).

A

B

Q

QQ

C

Impervious boundary

River

H1 H2

River
D

E

F

Flow domain

Figure 1: Flow domain between two rivers (?, it was partially based on).

Boundary of prescribed pressure or head. This involves the specification of a fixed pressure
or hydrostatic head on boundary ΓD. For instance, a boundary of this kind occurs whenever the
flow domain is adjacent to a body of open water. Segments A-B and E-F in Fig. ?? are examples of
a boundary of prescribed potential. The pressure or head boundary conditions are given functions,
e.g.

pl(x, t) = pb(x, t), x ∈ ΓD. (2.3)
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Boundary of prescribed flux. This involves the specification of the flux normal to the boundary
ΓN (see segment C-D in Figure ??):

ql · n = qb(x, t), x ∈ ΓN , (2.4)

where qb [m · s−1] is the given boundary flux. For infiltration at the top horizontal surface, it equals
to the Darcy velocity and referred to as the infiltration velocity.

Semipervious boundary (or mixed boundary condition). This boundary condition is more
complicated than the first two as it involves a case in which local conditions within the computa-
tional domain influence the flux in or out of the domain. This type of boundary occurs when the
porous medium domain is in contact with a body of water continuum (or another porous medium
domain, see for instance segments A-B and E-F in Fig. ??), however, a relatively thin semipervious
layer separates the two domains:

ql · n = I (p(x, t)− pb(x, t)) , x ∈ ΓR. (2.5)

where I is an impedance and pb(x, t) is the given external pressure.
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2.3 Partially Saturated Flow

The Richards equation is often used to describe single phase flow under partially saturated con-
ditions (i.e., the pores are not occupied exclusively by a single phase). As such, it requires the
introduction of a relative permeability and a capillary pressure relations. The Richards equation is
well suited to very large numerical problems (millions of degrees of freedom) because it requires
only one independent variable per cell.

2.3.1 Assumptions and Applicability

The Richards equation makes the fundamental assumption that we are neglecting the movement
of the gas phase. Because of this assumption, using the Richards equation may limit the kinds
of transport analysis that can be done. It should also be noted that the Richards equation is often
highly nonlinear due to strong dependence of the relative permeability of the liquid phase on the
liquid saturation. We also assume that there are no fractures and the water flows through the pores
only.

2.3.2 Process Model Equations

The Richards equation is derived from the conservation of liquid mass equation. In the mixed
formulation it is written for the volumetirc water content θ [mol ·m−3] and the Darcy velocity ql
[m · s−1]:

∂θ(pl)

∂t
= −∇ · (ηlql) +Q, (2.6a)

ql = −Kkrl
µl

(∇pl − ρlg), (2.6b)

where ηl [mol ·m−3] is the molar liquid density, Q [kg ·m−3 · s−1] is source or sink term, K [m2] is
absolute permeability tensor, µl [Pa · s ] is liquid viscosity, ρl [kg ·m−3 ] is liquid density, and krl
[-] is relative permeability. The total volumetric water content θ is defined as a product of porosity
ϕ, molar liquid density ηl and liquid saturation sl:

θ(pl) = ϕ(pl)ηl sl(pc).

Usage of the molar liquid density θ allows us to easily extend the model to a non-isothermal case.

Just like in the case of the fully saturated flow (??), the primary dependent variable in (??) is liquid
pressure pl. The difference with (??) is in that the pressure enters the equations in a nonlinear
form, through a dependence θl(pl) to be discussed in the following sections.

In general the porosity ϕ is a functions of pressure pl. The relative permeability krl is a function of
saturation sl, which in turns is a function of capillary pressure pc. The relation between pressures
pl and pc will be discussed in the next section. Typical models of relative permeability are the
van Genuchten-Mualem relations (??) and the Brooks-Corey-Burdine relations (??). The equation
(??) is continuous when transitioning from the saturated to the vadoze zones.
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2.3.3 Capillary Pressure – Saturation Relations

Richards equation for unsaturated flow requires representations of the capillary pressure pc and the
relative permeability krl. The capillary pressure is a fundamental dependent variable in the multi-
phase flow model, and relates the difference in pressure across an interface between two fluids to
the tendency of a porous medium to pull in the wetting fluid and push out the non-wetting one.
For the partially saturated fluid flow model typically used to characterize air-water systems, there
is only a single capillary pressure:

pc = pg − pl (2.7)

where pg is the pressure of the air/gas.

Let us define the effective liquid saturation se as

se =
sl − srl
s0l − srl

, (2.8)

where s0l is the maximum and srl is the residual (i.e. minimum) liquid saturations. Notice that (??)
implies the effective saturation se takes values in the range from zero to one.

Using these definitions, two widely used capillary pressure-saturation model relations are pre-
sented below, namely the Brooks-Corey (?) and van Genuchten (?) models.

Brooks-Corey model. The Brooks-Corey form of the saturation function (?) is given by

se = (α|pc|)−λ , (2.9)

where the empirical parameters λ [-], and α [Pa−1] are fit to experimental observations. The
inverse relation is written as

pc =
1

α
s−1/λ
e . (2.10)

Van Genuchten model. In the ? model the effective liquid saturation is described by the relation

se = [1 + (α|pc|)n]−m , (2.11)

with inverse relation
pc =

1

α

[
s−1/m
e − 1

]1/n
. (2.12)

The non-dimensional constants n [-], m [-] and dimensional α [Pa−1] are empirical parameters.

One may notice that Van Genuchten model is an evolution of Brooks-Corey model as evident both
by the dates and the form of the equations. In particular notice that if we take λ = mn and
(αpc)

n ≫ 1, then the Brooks-Corey and van Genuchten saturation functions, Equations (??) and
(??), are equivalent.
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2.3.4 Relative Permeability – Saturation Relations

Given capillary pressure - saturation relations pc(sl, the relative permeability relations needed by
Richards equation can be defined. Two popular relative permeability - saturation relations used in
air-water systems are the ? and ? models. The relative permeability model proposed by ? has the
form

krl(sl) = sℓe

{∫ se

0

pc(s)
−1ds

}2

{∫ 1

0

pc(s)
−1ds

}2 , (2.13)

where the power ℓ in sℓe is a pore-connectivity parameter that varies depending on the soil. Al-
though, ? estimated an average value of ℓ = 1/2, values of ℓ ranged from -5 to +5 across soils.
More recent studies [cf. ?] have suggested that ℓ = 1/2 may be appropriate for coarse-textured
soils, but not for many medium- and fine-textured soils. Thus, ℓ should be available as a fitting
parameter.

Similarly, the older ? model is given by

krl(sl) = sℓe

∫ se

0

pc(s)
−2ds∫ 1

0

pc(s)
−2ds

, (2.14)

where ? assumed ℓ = 2. However, as with the Mualem model (??), ℓ, should be available as a
fitting parameter.

Van Genuchten relative permeability. To obtain a closed-form solution for the relative perme-
ability using either the Mualem or Burdine models (Eqns.(??) and (??), respectively) combined
with the van Genuchten saturation function, the parameters n and m must be related by the expres-
sions

m =


1− 1

n
, Mualem,

1− 2

n
, Burdine.

(2.15)

In the more general case of independent values of m and n the relative permeability involves
the incomplete beta function (?). More recently (?) presented a general model for Mualem and
Burdine relative permeability functions for use with the van Genuchten saturation function in terms
of hypergeometric functions.

The Burdine relative permeability function for the liquid phase derived from the van Genuchten
saturation function is given by

krl = s2e

{
1−

[
1− s1/me

]m}
. (2.16)

The Mualem relative permeability function has the form (note power 2):

krl = sℓe

{
1−

[
1− s1/me

]m}2

. (2.17)
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Brooks-Corey relative permeability. Combined with the Brooks-Corey saturation function, the
Mualem relative permeability function is given by

krl =
(
se
)ℓ+2+2/λ

= (α|pc|)−((ℓ+2)λ+2) . (2.18)

The Burdine form originally considered by ? is given by

krl = (se)
ℓ+1+2/λ = (α|pc|)−((ℓ+1)λ+2) . (2.19)

2.3.5 Boundary conditions

To facilitate the discussion on boundary conditions, consider the case of flow described in Fig. ??.
Although the figure represents a two-dimensional flow field, the passage to three dimensions is
straightforward and requires no further explanations.

Four types of boundary conditions are supported by the model:

1. prescribed pressure pl (or head), see (??);

2. prescribed flux, i.e. normal component of the velocity ql, see (??);

3. semipervious boundary, see (??);

4. seepage face.

Boundary of prescribed pressure or head. This involves the specification of a fixed pressure
or hydrostatic head on boundary ΓD. For instance, a boundary of this kind occurs whenever the
flow domain is adjacent to a body of open water. Segments A-B and E-F in Fig. ?? are examples of
a boundary of prescribed potential. The pressure or head boundary conditions are given functions,
e.g.

pl(x, t) = pb(x, t), x ∈ ΓD. (2.20)

Boundary of prescribed flux. This involves the specification of the flux normal to the boundary
ΓN (see segment C-D in Figure ??):

ql · n = qb(x, t), x ∈ ΓN , (2.21)

where qb [m · s−1] is the given boundary flux. For infiltration at the top horizontal surface, it equals
to the Darcy velocity and referred to as the infiltration velocity.

Semipervious boundary (or mixed boundary condition). This boundary condition is more
complicated than the first two as it involves a case in which local conditions within the computa-
tional domain influence the flux in or out of the domain. This type of boundary occurs when the
porous medium domain is in contact with a body of water continuum (or another porous medium
domain, see for instance segments A-B and E-F in Fig. ??), however, a relatively thin semipervious
layer separates the two domains:

ql · n = I (p(x, t)− pb(x, t)) , x ∈ ΓR. (2.22)

where I is an impedance and pb(x, t) is the given external pressure.
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Seepage face. As is shown in Fig. ?? (see segments B-C and D-E), seepage face (or surface) is
always present when a phreatic surface ends at the down-stream external boundary of flow domain.
In this case the phreatic surface is tangent to the boundary of the porous medium at points C and D.
Along a seepage surface, water emerges from the flow domain, trickling downward to the adjacent
body of water.

A seepage surface is defined as the boundary where water leaves the ground surface and then
continues to flow in a thin film along its surface. Being exposed to the atmosphere, the pressure
along the seepage face is equal to the atmospheric pressure (i.e. capillary pressure pc = 0).

The geometry of the seepage face is known (as it coincides with the boundary of the porous
medium), except for its limit (points C and D in Figure ??) which is also lying on the (a priori)
unknown phreatic surface. The location of this point is, therefore, part of the required solution.
In unsteady flow, the location of the upper limit of the seepage face varies with time and could be
simulated in two ways:

1. Using a dynamic boundary condition that switches from a prescribed pressure boundary
condition to a prescribed flux boundary condition representing the recharge.

2. Combining boundary conditions in a hybrid one to represent the transition recharge/seepage
surface (e.g. see Fig. ??).
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-1.E-04

-5.E-05

0.E+00

5.E-05

1.E-04
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Figure 2: Seepage face.
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The state of the first option depends on the pressure inside the computational domain. Regarding
the second option, this hybrid boundary condition (based on ?) can be formulated as

ql · n = qb(t) for p <
(
3
2
p′ + p0

)
,

ql · n =
(7−2f−f2)

8
qb(t) for

(
3
2
p′ + p0

)
≤ p ≤

(
1
2
p′ + p0

)
,

ql · n = I(p− p0) for
(
1
2
p′ + p0

)
< p,

(2.23)

where qb(t) is the maximum recharge and f(p, t) is a local variable between −1 and 1 defined as

f(p, t) = 2
p′ − (p(xb, yb, zb, t)− p0)

p′
, (2.24)

where p0 is a reference pressure (in this particular example case, its value is equal to the atmo-
spheric pressure), and p′ is defined as

p′ = I−1qb(t). (2.25)
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2.4 Isothermal Richards Equation with Dual Porosity Model

Dual porosity model is designed to model fluid flows when the solid contains both pores/matrix
and fractures.

2.4.1 Assumptions and Applicability

Typically flow in the fracture is much faster that that in the pores/matrix. Therefore, dual-porosity
model assumes that water flow is restricted to the fractures. The pores in the solid material (e.g.
rock) represent immobile pockets that can exchange, retain and store water but do not permit
convective flow. This leads to dual-porosity type flow and transport models that partition the liquid
phase into mobile and immobile regions.

2.4.2 Process Model Equations

The Richards equation in the mobile (fracture dominated) region is augmented by the water ex-
change term Σw:

∂θf
∂t

= −∇ · (ηlql) +Qf − Σw, (2.26a)

ql = −Kkr
µ

(∇pl − ρlg), (2.26b)

where Σw is the transfer rate of water from the matrix to the fracture, and Qf is source or sink term
[kg ·m−3 · s−1]. The equation for water balance in the matrix is

∂θm
∂t

= Qm + Σw,

where and Qm is source or sink term [kg ·m−3 · s−1]. The volumetric water contents θf and θm are
defined as

θf = ϕf ηl slf , θm = ϕm ηl slm,

where saturations slf and slm may use different capillary pressure-saturation models. The rate
of water transfer from the matrix to the fracture regions Σw is proportional to the difference in
hydraulic heads:

Σw = αw(hf − hm),

where αw is the mass transfer coefficient. Since hydraulic heads are needed for both regions, this
equation requires estimating retention curves for both regions and therefore is nonlinear.

2.4.3 Boundary conditions

To facilitate the discussion on boundary conditions, consider the case of flow described in Fig. ??.
Although the figure represents a two-dimensional flow field, the passage to three dimensions is
straightforward and requires no further explanations.

In the dual porosity model one has to specify the boundary conditions for the fracture and the
matrix (pores). Due to the assumption that the pores do not permit convective flow,
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the boundary conditions for the matrix are always zero flux conditions:

qm · n = 0, x ∈ Γ. (2.27)

Boundary of prescribed pressure or head for fracture. This involves the specification of a
fixed pressure or hydrostatic head on boundary ΓD. For instance, a boundary of this kind occurs
whenever the flow domain is adjacent to a body of open water. Segments A-B and E-F in Fig. ??
are examples of a boundary of prescribed potential. The pressure or head boundary conditions are
given functions, e.g.

pf (x, t) = pb(x, t), x ∈ ΓD. (2.28)

Boundary of prescribed flux for fracture. This involves the specification of the flux normal to
the boundary ΓN (see segment C-D in Figure ??):

qf · n = qb(x, t), x ∈ ΓN , (2.29)

where qb [m · s−1] is the given boundary flux. For infiltration at the top horizontal surface, it equals
to the Darcy velocity and referred to as the infiltration velocity.

Semipervious boundary (or mixed boundary condition). This boundary condition is more
complicated than the first two as it involves a case in which local conditions within the computa-
tional domain influence the flux in or out of the domain. This type of boundary occurs when the
porous medium domain is in contact with a body of water continuum (or another porous medium
domain, see for instance segments A-B and E-F in Fig. ??), however, a relatively thin semipervious
layer separates the two domains:

qf · n = I (p(x, t)− pb(x, t)) , x ∈ ΓR. (2.30)

where I is an impedance and pb(x, t) is the given external pressure.

Seepage face. As is shown in Fig. ?? (see segments B-C and D-E), seepage face (or surface) is
always present when a phreatic surface ends at the down-stream external boundary of flow domain.
In this case the phreatic surface is tangent to the boundary of the porous medium at points C and D.
Along a seepage surface, water emerges from the flow domain, trickling downward to the adjacent
body of water.

A seepage surface is defined as the boundary where water leaves the ground surface and then
continues to flow in a thin film along its surface. Being exposed to the atmosphere, the pressure
along the seepage face is equal to the atmospheric pressure (i.e. capillary pressure pc = 0).

The geometry of the seepage face is known (as it coincides with the boundary of the porous
medium), except for its limit (points C and D in Figure ??) which is also lying on the (a priori)
unknown phreatic surface. The location of this point is, therefore, part of the required solution.
In unsteady flow, the location of the upper limit of the seepage face varies with time and could be
simulated in two ways:
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1. Using a dynamic boundary condition that switches from a prescribed pressure boundary
condition to a prescribed flux boundary condition representing the recharge.

2. Combining boundary conditions in a hybrid one to represent the transition recharge/seepage
surface (e.g. see Fig. ??).

The state of the first option depends on the pressure inside the computational domain. Regarding
the second option, this hybrid boundary condition (based on ?) can be formulated as

qf · n = qb(t) for p <
(
3
2
p′ + p0

)
,

qf · n =
(7−2f−f2)

8
qb(t) for

(
3
2
p′ + p0

)
≤ p ≤

(
1
2
p′ + p0

)
,

qf · n = I(p− p0) for
(
1
2
p′ + p0

)
< p,

(2.31)

where qb(t) is the maximum recharge and f(p, t) is a local variable between −1 and 1 defined as

f(p, t) = 2
p′ − (p(xb, yb, zb, t)− p0)

p′
, (2.32)

where p0 is a reference pressure (in this particular example case, its value is equal to the atmo-
spheric pressure), and p′ is defined as

p′ = I−1qb(t). (2.33)
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3 Thermal Flow Processes

3.1 Overview

Heat flow and thermal conduction is an important aspect of many geochemical systems affecting
chemical processes through changes in equilibrium and kinetic rate constants. Non-isothermal
conditions can also result in buoyancy driven flow leading to convection cells and causing fingering
phenomena due to differences in density.

Equations of state for fluid density, internal energy and/or enthalpy are needed in addition to heat
capacity and thermal conductivity of the porous medium. Often the fluid properties for a complex
mixture are unknown and the pure phase end member properties are used.

3.2 Model Equations

As heat flow is coupled to the Darcy flux, the heat equation itself is coupled to the flow equation
as well as reactive transport equations through heat generated by chemical reactions. Conversely
the flow and reactive transport equations are coupled to the heat equation through the tempera-
ture dependence of fluid properties such as density, viscosity, internal energy and enthalpy, and
equilibrium thermodynamic and kinetic rate constants.

3.2.1 Partially saturated flow with water vapors

In the case of isothermal Richards equations it was possible to neglect water vapors, as presumably
their concentration was the same everywhere. In the case when temperature variations cannot be
neglected the effects of water vapors could be significant.

The Richards equation is derived from the conservation of liquid mass equation. Thus, changing
vapor concentrations introduce an additional term

−∇ ·
(
Kg∇

pv
pg

)
into (??), where pv and pg [Pa] are the vapor and the gas pressures, respectively, and Kg is the
effective diffusion coefficient of the water vapors. The gas pressure is presumed to be equal to
the atmospheric one, while water vapor pressure is derived from the equilibrium of liquid and gas
phases:

pv = Psat(T ) exp

(
Pcgl

ηlRT

)
,

where Psat is the saturated vapor pressure, Pcgl is the capilary gas-liquid pressure, andR is the ideal
gas constant.
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The Richards equation with gas vapors takes the form

∂θ(pl)

∂t
= −∇ · (ηlql)−∇ ·

(
Kg∇

pv
pg

)
+Q, (3.1a)

ql = −Kkrl
µl

(∇pl − ρlg), (3.1b)

where ηl is the molar liquid density, Q is source or sink term [kg ·m−3 · s−1], K is absolute perme-
ability tensor, µl is liquid viscosity, ρl is liquid density, and krl is relative permeability. The total
volumetric water content θ has to be modified to include the vapors

θ = ϕηl sl + ϕ(1− ηl)Xl,

where Xl is molar fraction of water vapors.

The effective diffusion coeficient of water vapor is given by

Kg = ϕggτgηgDg,

where sg is gas saturation, τg is the gas tortuosity, ηg is the molar density of gas, and Dg is the gas
diffusion coefficient. The later, based on the TOUGHT2 model, is

Dg = Dref
Pref

pg

(
T

Tref

)α
,

where Dref = 2.14 × 10−5, Pref is the atmospheric pressure, Tref = 273.15, α = 1.8. Finally, we
need a model for the gas tortuosity for which we use ? model

τg = ϕβ, sγg , β = 1/3, γ = 7/3.

3.2.2 Energy Conservation Equation

The Richards equation with water vapor is coupled with the conservation of energy equation. One
form of such equation in a porous medium with porosity ϕ is given by

∂

∂t

[
ϕρlulsl + (1− ϕ)ρrur

]
+∇ ·

[
−Kkrl

µl
(∇pl − ραgez)ρlhl −QT

]
= Qe, (3.2)

where ρr and ρl are the density, ur and ul are the internal energy of the rock and the liquid phases,
respectively; K is the absolute permeability tensor, krl is the relative permeability coefficient, sl
is the liquid saturation, µl is fluid viscosity, hl is the enthalpy of the liquid phase, QT represents
thermal conduction and radiation, and Qe is a source or sink of energy. Note that the energy
consumed/produced by chemical reactions is included in this last term.

The primary variables in (??) are the pressure pl and the temperature T . The internal energies ur
and ul are both functions of temperature. Assuming that the internal energy ur and the thermal
conduction QT have linear dependence on temperature,

ur = crT and QT = κT,
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the equation (??) takes the form
∂

∂t

[
ϕslρlul + (1− ϕ)ρrcrT

]
+∇ ·

[
qlρlhl − κ∇T

]
= Qe, (3.3)

where T refers to temperature, ql is the Darcy velocity

ql = −Kkrl
µl

(∇pl − ραgez) , (3.4)

the coefficient κ denotes the thermal conductivity of the medium and cr refers to the specific heat
of the porous medium. The internal energy and enthalpy are related by the equation

ul = hl −
pl
ρl
. (3.5)

Thermal conductivity if often described by the phenomenological relation given by ?

κ = κdry +
√
sl(κsat − κdry), (3.6)

where κdry and κsat are dry and fully saturated rock thermal conductivities, and sl denotes the
saturation state of the liquid.

Evapotranspiration. Evapotranspiration models should include all the processes that convert
water from the aqueous phase into water in the gaseous phase, i.e., water vapor. This should also
account for evaporation from soil and plant surfaces and plant transpiration and include options
where these components vary wiith soil properties and structure of the plant canopy.

Equation of State. For multicomponent system, equation of state (EOS) data is required for wa-
ter and all the NAPL components. Typically these are EOS for pure substances that are combined
for mixtures. A basic EOS relates density to pressure and temperature. The form for the EOS
is typically cubic such as the Soave-Redlich-Kwong (SRK) or the Peng-Robinson (PR) models.
Tabular models are also in common use.

Mixture thermodynamics is used to combine pure phase EOS’s for the application. The EPA
lists over 80 potential NAPL components (volatile organic compounds or VOCs) that can cause
groundwater contamination and has data bases with at least some properties for these contaminants.

Mixture Internal Energy and Enthalpy. These will generally follow the simple additive rule
based of component values and mass fraction. Consideration must be also given to heats of solu-
tion.

3.3 Boundary Conditions

The boundary conditions for the thermal flow (??)-(??) consist of the conditions for each of the
equations. The choice of the boundary conditions for (??) are identical to those of Isothermal
equaiton. We repeat those equations here for the sake of self-contained presentation. The boundary
conditions for conservation of energy equation (??) may take the form of specified temperature or
heat flux including zero temperature gradient. Initial conditions include specifying the temperature
over the computational domain such as a constant value or derived from the geothermal gradient.
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Specified temperature boundary conditions. These are Dirichlet type conditions on the tem-
perature saying that at the boundary ΓTD

T (x, t) = Tb(x, t), x ∈ ΓTD, (3.7)

where the temperature Tb(x, t) is given.

Specified heat flux boundary conditions. These are Neumann type boundary conditiosn on the
temperature saying that at the boundary ΓTN

∂nT (x, t) = ∂nTb(x, t), x ∈ ΓTD, (3.8)

where the temperature ∂nTb(x, t) is given.

Boundary of prescribed pressure or head. This involves the specification of a fixed pressure
or hydrostatic head on boundary ΓlD. For instance, a boundary of this kind occurs whenever the
flow domain is adjacent to a body of open water. Segments A-B and E-F in Fig. ?? are examples of
a boundary of prescribed potential. The pressure or head boundary conditions are given functions,
e.g.

pl(x, t) = pb(x, t), x ∈ ΓlD. (3.9)

Boundary of prescribed flux. This involves the specification of the flux normal to the boundary
ΓlN (see segment C-D in Figure ??):

ql · n = qb(x, t), x ∈ ΓlN , (3.10)

where qb [m · s−1] is the given boundary flux. For infiltration at the top horizontal surface, it equals
to the Darcy velocity and referred to as the infiltration velocity.

Semipervious boundary (or mixed boundary condition). This boundary condition is more
complicated than the first two as it involves a case in which local conditions within the computa-
tional domain influence the flux in or out of the domain. This type of boundary occurs when the
porous medium domain is in contact with a body of water continuum (or another porous medium
domain, see for instance segments A-B and E-F in Fig. ??), however, a relatively thin semipervious
layer separates the two domains:

ql · n = I (p(x, t)− pb(x, t)) , x ∈ ΓR. (3.11)

where I is an impedance and pb(x, t) is the given external pressure.

Seepage face. As is shown in Fig. ?? (see segments B-C and D-E), seepage face (or surface) is
always present when a phreatic surface ends at the down-stream external boundary of flow domain.
In this case the phreatic surface is tangent to the boundary of the porous medium at points C and D.
Along a seepage surface, water emerges from the flow domain, trickling downward to the adjacent
body of water.
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A seepage surface is defined as the boundary where water leaves the ground surface and then
continues to flow in a thin film along its surface. Being exposed to the atmosphere, the pressure
along the seepage face is equal to the atmospheric pressure (i.e. capillary pressure pc = 0).

The geometry of the seepage face is known (as it coincides with the boundary of the porous
medium), except for its limit (points C and D in Figure ??) which is also lying on the (a priori)
unknown phreatic surface. The location of this point is, therefore, part of the required solution.
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4 Transport Processes

4.1 Overview

Transport is one of the most important process that needs to be accurately captured in the Environ-
mental Management modeling tool set. In what follows, we use ”Transport” to refer to the set of
physical processes that lead to movement of dissolved and solid contaminants in the subsurface,
treating the chemical reactions that can affect the transport rate through a retardation effect as a
separate set of processes. The principal transport processes to be considered are advection, me-
chanical dispersion, and molecular diffusion. The equation for mass conservation of species C can
be written as

∂(ϕ
∑

α[sαCα,i])

∂t
+∇ · J adv = ∇ · J disp +∇ · J diff +Q,

where Cα,i is a concentration of ith species in phase α, J adv is advective flux, J disp is the dispersive
flux, J diff is the diffusive flux (often grouped with the dispersive flux), and Q is the summation of
various source terms which may include reactions.

The principal assumptions associated with the transport process models derive from the continuum
treatment of the porous medium. Pore scale processes, including the resolution of variations in
transport rates within individual pores or pore networks (???), are generally not resolved, although
some capabilities for treating multi-scale effects are discussed in Section ??. In general, it is
assumed that within any one Representative Elementary Volume (REV) corresponding to a grid cell
all transport rates are the same. It will be possible, however, to define overlapping continua with
distinct transport rates, as in the case where the fracture network and rock matrix are represented
as separate continua.

Transport processes may be tightly coupled to both flow and reaction processes. In the case of
flow, one important coupling is associated with the transport of chemical constituents that affect
the density of the solution, which in turn affects flow rates through buoyancy. In the case of
chemical reactions, the coupling effect is normally very strong for reactive constituents. Chemical
reactions may consume components present in the gaseous phase (e.g., CO2 or O2), thus modifying
the saturation of the phase itself. Reactions can strongly modify gradients, and thus transport rates,
by either consuming or producing various chemical species.

4.2 Transport in Porous Medium

The name of this section indicates that we consider the pransport processes in the soil with pores,
but no fractures. At the same time we still consider the gas and solid phases in addition to the
liquid pahse.

4.2.1 Process Model Equations

The contaminants can be a part of one of three phases: solid, liquid or gas. When the contaminant
i is present in the solid phase (e.g. ice) it is assumed not to be moving. One of the key assumptions
of Richards equations used for flow models is that the gas phase is not moving. Therefore, the
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concervation of mass equation in its general form (??) can be separated into equations for the
liquid and gas phases. The equation for the species i dissolved in the liquid phase is

∂(ϕslCl,i)

∂t
+∇ · J adv

l,i = ∇ · J disp
l,i +∇ · J diff

l,i +Ql,i (4.1)

and the equation for the pecies i in the gas phase is

∂(ϕsgCg,i)

∂t
= ∇ · J diff

g,i +Qg,i. (4.2)

The gas and liquid phases are related through an equation for saturations sl and sg

sg = 1− sl.

The transition of the polutants between phases can be modeled through the source terms Q∗.

4.2.2 Assumptions and Applicability

We consider pure advection process and exclude the attenuation mechanisms and microbial be-
haviors that are discussed elsewhere. Note that there are situations where the advection could be
modified by attributes of the transported mass and the pore structure. One is the potential for non-
reactive anions to be repulsed by negatively charged solid surfaces into the center of pore throats
where the velocity is faster. Another is the advection of inorganic and organic colloids, and mi-
croorganisms, whose movement can be affected by the geometry of pore throats. In addition to
being subject to the same physicochemical phenomena as abiotic colloids, microorganisms have
biological processes that can affect advection (e.g., temporal changes in surface properties due to
changes in metabolic state; chemotaxis; predation).

4.2.3 Advective Fluxes

Advection is the process where the bulk fluid motion transports mass and heat. In the simplest
conceptualization of advection, the mass of a component in a fluid parcel simply moves with the
velocity of the fluid parcel. This assumes there are no other processes (e.g., diffusion, dispersion,
reactions) that can affect the component concentration in the fluid parcel. Thus, advection can be
a particulate or a dissolved species moving with the pore-water whose velocity is governed by the
flow processes (discussed elsewhere). Continuum models have addressed these behaviors using
bulk parameterizations to characterize the pore-scale controls and controlling chemical gradients.

Numerical difficulties with the accuracy, robustness, and computation efficiency of modeling the
advection of moving steep concentration fronts, especially in complex velocity fields, are well
known. In some cases, there are constraints on the Peclet and Courant numbers for the useful
application of a given technique. The advective flux, J adv, of a dissolved species is described
mathematically as

J adv
l,i = ϕslvlCl,i, (4.3)

where ϕ is the porosity, sl is liquid saturation, vl is the average linear velocity of the liquid, and
Cl,i is the concentration of the ith species in the liquid phase.
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4.2.4 Dispersive Fluxes

Dispersion of a dissolved constituent refers to its spreading along tortuous pathways in a porous
medium caused by mixing effects. Dispersion takes place in the direction of the flow (longitudinal)
and normal to the flow (transverse). A conventional Eulerian Fickian representation of dispersion
is assumed, which may be taken as the asymptotic limiting form of the dispersion tensor (?). It
should be noted that issues related to the scale dependence of dispersion are not considered. While
this approach is known to have several limitations, such as backward dispersion against the direc-
tion of flow and scale independence, nevertheless, it is still widely used in practical applications.
Furthermore, it may be the only approach for representing local scale dispersion.

The dispersive flux Jdisp
i for a variably saturated porous medium has the form

Jdisp
i = −ϕsαD∇Ci, (4.4)

described in analogy to a Fickian process, where D denotes the dispersion tensor. The dispersion
tensor takes different forms depending on whether the media is isotropic or anisotropic.

Isotropic Media. For an isotropic medium with no preferred axis of symmetry the dispersion
tensor D has the well-known form (?)

D = αTvI + (αL − αT )
vv

v
, (4.5)

=


αTv + (αL − αT )

v2x
v

(αL − αT )
vxvy
v

(αL − αT )
vxvz
v

(αL − αT )
vyvx
v

αTv + (αL − αT )
v2y
v

(αL − αT )
vyvz
v

(αL − αT )
vzvx
v

(αL − αT )
vzvy
v

αTv + (αL − αT )
v2z
v

 , (4.6)

characterized by the two parameters αL [m] and αT [m] referred to the longitudinal and transverse
dispersivity, respectively. The vector v = (vx, vy, vz) [m/s] denotes the average pore velocity with
magnitude v, and I is the identity matrix.

Anisotropic Media. The dispersion tensor for anisotropic media has not received much attention,
However, it has been shown that in an axi-symmetric medium with axis of symmetry λs, the
dispersion tensor takes the general form (?)

D = αHT vI +
[
αHL − αVT + cos2θ

(
αVL − αHL + αVT − αHT

)] vv
v

+
(
αVT − αHT

)
v

[
λsλs −

cos θ

v
(λsv + vλs)

]
, (4.7)

where αH,VL and αH,VT refer to the longitudinal and transverse dispersivity in the horizontal and
vertical directions, and θ denotes the angle between the axis of symmetry and the flow velocity.
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4.2.5 Diffusive Fluxes

Molecular diffusion is often indistinguishable from mechanical dispersion as a process operating in
porous media, and thus the two are often lumped together to form a hydrodynamic dispersion term.
Unlike dispersion, however, there is no effect of flow direction, so the potential difficulties associ-
ated with mismatches between flow and grid coordinate direction do not arise. Molecular diffusion
is an entropy-producing process in which the random motion of molecules causes spreading or
homogenization of a concentration field. Atomistic representations of molecular diffusion capture
this random motion, but continuum models of the kind considered here typically represent only
the average behavior of the molecules. It is noteworthy, however, that atomistic and continuum
models for molecular diffusion do agree if sufficiently long time scales with a sufficient number of
molecules are considered (?).

The principal distinctions in the treatment of molecular diffusion are between those based on Fick’s
Law, which states that the diffusive flux is linearly proportional to the concentration gradient,
and multicomponent treatments that take into account the buildup of electrostatic forces as the
individual charged species (ions) attempt to diffuse at their own rate. In addition, a full treatment
of molecular diffusion involves calculating fluxes in terms of gradients in chemical potential rather
than concentration (?).

In addition to the complexities associated with chemical interactions, it is also necessary to account
for the effects of the porous medium through which diffusion occurs. Corrections to the diffusive
flux are often represented with a tortuosity (see Section ?? below) based on an upscaled constitutive
law intended to capture the heterogeneous pore geometries. Since diffusion may be restricted or
eliminated through narrow pore throats, the effective diffusivity for a specific ion may be quite
different from its diffusivity in water alone. Capturing the multiscale nature of the pore structure
and its effect on molecular diffusion remains a challenge.

General Formulation for Molecular Diffusion. The most rigorous and general expression for
molecular diffusion is given by

Jdiff
j = −

∑
i

Lji∇
µi
T
, (4.8)

where the Lji are the phenomenological coefficients introduced in the theory of irreversible ther-
modynamics (???) and µj is the chemical potential of the ith species. Here, the fluxes are linearly
related to gradients in the chemical potentials of the solutes rather than to their concentrations as in
Fick’s Law that follows. The phenomenological coefficients, Lji, can be linked back to measurable
quantities by making use of the mobility as the “velocity” of a particle acted upon by a force, with
the force in this case provided by the chemical potential rather than the concentration

Jdiff
j = −∇(MjCjµj), (4.9)

where uj is the mobility of the jth ion defined by

Mj =
Dj

RT
. (4.10)
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Figure 3: Tortuous diffusion paths in porous media (?)

Single Species Diffusion (Fick’s Law). Molecular diffusion is usually described in terms of
Fick’s First Law, which states that the diffusive flux is proportional to the concentration gradient

J diff
i = −∇ (DiCi) . (4.11)

Di is referred to as the diffusion coefficient and is specific to the chemical component considered
as indicated by the subscript i. Fick’s First Law is a phenomenological theory for diffusion that
relates diffusion to the “driving force” provided by the concentration gradient, although it can also
be derived atomistically (?). In the case of diffusion in porous media, it is normally necessary to
include a tortuosity correction as well (see discussion below).

Tortuosity. Since water-rock interaction commonly takes place in porous materials, it is impor-
tant to account for the effect of tortuosity (Figure ??), which is defined as the ratio of the path
length the solute would follow in water alone, L, relative to the tortuous path length it would
follow in porous media, Le (?)

τL =
(
L/Le

)2
. (4.12)

In this definition of tortuosity (sometimes the inverse of Equation (??) is used), its value is always
less than one and the effective diffusion coefficient in porous media is obtained by multiplying the
tortuosity by the diffusion coefficient for the solute in pure water.

With this formulation, the diffusion coefficient in porous media, D∗
i , is given by

D∗
i = τLDi. (4.13)

The diffusive flux, then, is given by

Jdiff
j = −∇ (ϕsαDjτLCj) = −∇

(
ϕsαD

∗
jCj

)
. (4.14)

Various approaches for calculating formation factors (and thus, the diffusion coefficient in porous
medium) are in use, with a formulation based on Archie’s Law being the most common for fully
saturated (single phase) systems

Ff =
1

aϕm
, (4.15)

where a is a unitless fitting constant and m is unitless the cementation exponent.

For partially saturated systems, it is common to use the Millington-Quirk formulation (???)

D∗
i = ϕ4/3s10/3α Di, (4.16)

where the saturation, sα, can refer to either the gas or the aqueous phase.
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4.2.6 Boundary Conditions

Boundary conditions have to be specified for each of the species concentrations Ci. A number of
boundary conditions are possible for the diffusive flux, including a Dirichlet boundary conditions
(prescribed concentration) and Neumann boundary conditions (prescribed flux).

Dirichlet Boundary Conditionis: These conditions specify a (typically fixed/constant) value of
the concentration of the species, C0, at the boundary location:

C(x) = C0. (4.17)

Neumann Boundary Conditions: These conditions specify a value of the flux

J · n = Jn
0 , (4.18)

or concentration gradient
∂C

∂n
= Cn

0 , (4.19)

where either Jn
0 or Cn

0 is prescribed. The flux term can be a total, advective, or diffusive flux.
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4.3 Single-Phase Transport with Dual Porosity Model

The multiscale nature of porous media and the transport processes associated is arguably the most
significant and largely unresolved challenge for simulation of fate and transport in subsurface
aquifers. Transport actually operates at the pore scale where variations in flow velocity and re-
action rates can result in microscopic variability in transport rates. Continuum treatments of trans-
port in porous media cannot resolve such sub-grid variations easily, although various upscaling
techniques may be available for capturing the smaller scale behavior. In addition, multi-continuum
or hybrid approaches may obviate the need for a formal upscaling procedure, although there are
significant computational difficulties and expense associated with their implementation.

4.3.1 Process Model Equations

The dual porosity formulation of the solute transport consists of two equations for the fracture and
matrix regions. In the fracture region, we have (?)

∂(ϕfslfCf )

∂t
+∇ · J adv = ∇ · J disp +∇ · J diff − Σs +Qf , (4.20)

where slf is liquid saturation in fracture, Σs is the solute exchange term, and Qf is source or sink
term. In the matrix region, we have

∂(ϕmslmCm)

∂t
= Σs +Qm,

where slm is liquid saturation in matrix, Qm is source or sink term. The solute exchange term is
defined as

Σs = αs(Cf − Cm) + ΣwC
∗,

where C∗ is equal to Cf if Σw > 0 and Cm if Σw < 0. The coefficient αs is the first-order solute
mass transfer coefficient [s−1].

4.3.2 Boundary Conditions

For the dual porosity model boundary conditions have to be specified for the fracture and the matrix
concentrations. The choice of the boundary conditions for the fracture component Cf are (??)-
(??). Yet, we repeat them here for ease of reference. The boundary conditions for the matrix/pore
component Cm are limited only to (??) and (??), and exclude the condition (??) on the flux values.

Boundary conditions have to be specified for each of the species concentrations Ci. A number of
boundary conditions are possible for the diffusive flux, including a Dirichlet boundary conditions
(prescribed concentration) and Neumann boundary conditions (prescribed flux).

Dirichlet Boundary Conditionis: These conditions specify a (typically fixed/constant) value of
the concentration of the species, C0, at the boundary location:

C(x) = C0. (4.21)
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Neumann Boundary Conditions: These conditions specify a value of the flux

J · n = Jn
0 , (4.22)

or concentration gradient
∂C

∂n
= Cn

0 , (4.23)

where either Jn
0 or Cn

0 is prescribed. The flux term can be a total, advective, or diffusive flux.

4.4 Data Needs

For modeling of molecular diffusion in porous media, two kinds of data are needed:

1. Experimental data on the diffusivities of individual ions in aqueous solution;

2. Characterization of the tortuosity of the porous medium under consideration. The tortuosity
of the medium may be determined by a number of methods, including transport experiments
involving tracers (?), and microscopic imaging of the porous medium using synchrotron X-
ray or related methods (?), or estimation based on grain size and mineralogy of the materials.
In addition, it may be possible to determine tortuosity from effective diffusion coefficients
determined in field-scale experiments.

For the diffusivities of individual ions, there are some compilations in the literature (??). While the
diffusivity of individual ions could in theory be calibrated from field tests, normally they should
be determined independently so that a more accurate determination of the tortuosity can be carried
out.
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5 Biogeochemical Reaction Processes

A range of biogeochemical reaction processes may be included in the HPC Simulator, including
multicomponent aqueous complexation, sorption (including simple linear distribution coefficient,
or Kd, and more complex multicomponent and multisite surface complexation and ion exchange
models), mineral dissolution and precipitation, and microbially-mediated reactions.

5.1 Aqueous Complexation

5.1.1 Overview

It is customary to treat the reaction network corresponding to the homogeneous reactions in the
aqueous phase as a distinct set of processes taking place within a single aqueous phase (?). This
reaction network is sometimes referred to as aqueous complexation, since it involves reactions
between individual dissolved species to form complexes.

5.1.2 Process Model Equations

Equilibrium Reactions. If we assume that the various aqueous species are in chemical equilib-
rium, it is possible to reduce the number of independent concentrations, that is, the number that
actually need to be solved for. Mathematically, this means that in a system containing Ntot aque-
ous species, the number of independent chemical components in the system Nc is reduced from
the total number of species by the Nx linearly independent chemical reactions between them (for
further discussion, see ???????. This leads to a natural partitioning of the system into Nc primary
or basis species, designated here as Cj , and the Nx secondary species, referred to as Ci (???). The
equilibrium chemical reactions between the primary and secondary species take the form

Ai ⇌
Nc∑
j=1

νijAj (i = 1, ..., Nx), (5.1)

where Aj and Ai are the chemical formulas of the primary and secondary species respectively and
νij is the number of moles of primary species j in one mole of secondary species i. It should
be noted here that the partitioning between the primary and secondary species is not unique, that
is, we can write the chemical reactions in more than one way. The equilibrium reactions provide
an algebraic link between the primary and secondary species via the law of mass action for each
reaction

Ci = K−1
i γ−1

i

Nc∏
j=1

(γjCj)
νij (i = 1, ..., Nx), (5.2)

where γj and γi are the activity coefficients for the primary and secondary species respectively, and
Ki is the equilibrium constant of the reaction given in Equation (??), written here as the destruction
of one mole of the secondary species. Equation (??) implies that the rate of production of a primary
component j due to homogeneous reactions, Raq

j , can be written in terms of the sum of the total
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rates of production of the secondary species (?)

Raq
j = −

Nx∑
i=1

νijI
aq
i , (5.3)

where Iaqi is the reaction rate of the secondary species in the aqueous phase. Equation (??) sug-
gests that one can think of a mineral dissolving, for example, as producing only primary species
which then equilibrate instantly with the secondary species in the system. Using Equation (??) and
neglecting transport for the sake of simplicity here, the rates of the equilibrium reactions can be
eliminated (?)

∂

∂t

[
ϕswρw

(
Cj +

Nx∑
i=1

νijCi

)]
= Rmin

j (j = 1, ..., Nc), (5.4)

where sw and ρw refer to the saturation and mass density of the aqueous phase, respectively. Note
that only the term Rmin

j remains on the right hand side of Equation (??) because we have assumed
that they are the only kinetic reactions.

Definition of a Total Concentration. If a total concentration, Ψj , is defined as (???)

Ψj = Cj +
Nx∑
i=1

νijCi, (5.5)

then the governing differential equations can be written in terms of the total concentrations in the
case where only aqueous (and therefore mobile) species are involved (Kirkner and Reeves, 1988)

∂

∂t
(ϕswρwΨj) +∇ · [ϕswρwvwΨj −D∇ (ϕswρwΨj)] = Rmin

j (j = 1, ..., Nc), (5.6)

where vw is the velocity of the aqueous phase and Rmin
j denotes the kinetic mineral reaction rate.

As pointed out by ? and ?, the total concentrations can usually be interpreted in a straightforward
fashion as the total elemental concentrations (e.g., total aluminum in solution), but in the case
of H+ and redox species, the total concentration has no simple physical meaning and the total
concentrations may take on negative values. Such quantities, however, do appear occasionally in
geochemistry, the best example of which is alkalinity. In fact, the alkalinity (which may take on
negative values) is just the negative of the total H+ concentration where CO2(aq) or H2 CO3 is
chosen as the basis species for the carbonate system.

Note that the total concentration is generally only a useful concept computationally where equilib-
rium reactions allow the definition of secondary species described with Equation (??). In the case
where the reactions among aqueous species are described kinetically, then the various aqueous
complexes cannot be eliminated algebraically and they have to be solved for individually.

Kinetic Aqueous Reactions. If the aqueous phase reactions are not sufficiently fast for a given
time scale of interest that they reach equilibrium, then they must be treated kinetically by solving
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an ordinary differential equation. A convenient way to represent the reactions is with a Transition
State Theory (TST) type of rate law (???)

Iaqj = kaq+

(
Qaq

Kaq

)∏
ani , (5.7)

where kaq+ is the rate constant for the aqueous reaction, Qaq is the ion activity product , Kaq is the
corresponding equilibrium constant, and ai are the activities of the species affecting the rate far
from equilibrium raised to the power n.

Alternatively, the reactions can be considered as completely irreversible, in which case there is no
back reaction. A good example is radioactive decay. The reactions are assumed to take the form

Iaqj = kaq+
∏

ani , (5.8)

and are therefore similar to the TST form except that a dependence on the saturation state is miss-
ing. This more general form of irreversible reactions can be used to model decay and ingrowth of
daughter products.

5.2 Aqueous Activity Coefficients

5.2.1 Overview

This Toolset includes models for thermodynamic activity coefficients in aqueous solutions. Multi-
ple models, each with its own set of parameters and limitations, will be provided. In general, the
toolset user must choose one such model to use in a given modeling application. In setting up to
run the application, the user must ensure that a matching database with the requisite model-specific
parameters is provided to support the run.

A key solution parameter associated with aqueous species activity coefficients is the ionic strength,
defined as

Ī =
1

2

∑
i

miz
2
i . (5.9)

Here mi denotes the molal concentration (molality) of the ith solute species and zi denotes its
electrical charge number. Activity coefficients of charged solute species include a functional de-
pendence on the ionic strength. The exact nature of this dependence depends on the specific model.

Activity coefficient models can be classified as to the upper limit of ionic strength to which a
given model provides generally satisfactory results. For the most part, there are two kinds of such
models. Low ionic strength models are generally usable up to an ionic strength of more or less 1
molal. Examples include the Davies equation and the B-dot equation. These models are based on
simple equations and have a relatively small number of associated parameters. High ionic strength
models are usable to very high ionic strength (>20 molal). The highest values of ionic strength
normally seen are limited by the solubilities of highly soluble salts, such as calcium chloride and
calcium nitrate. Examples of high ionic strength models include Pitzer’s equations and Extended
UNIQUAC. High ionic strength models have more complex equations and require substantially
more parameters than low ionic strength models. They are most likely to be applied to problems
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in which the ionic strength is higher than 1 molal. At low ionic strength, it is generally preferable
to use a low ionic strength model, because the number of required parameters is smaller. In many
instances, there will be sufficient supporting data available to support the use of low ionic strength
models for large numbers of chemical components and species, but that may not be the case for the
high ionic strength models. There are activity coefficient models that extend to intermediate ionic
strength (4-6 molal). The NEA SIT model is an example. These models tend to be intermediate in
equation complexity and number of required parameters. They have not received much attention
to date in modeling geochemically complex systems.

It is noted that low ionic strength models are sufficient for many EM applications. Hanford tanks
and the WIPP site pose notable exceptions, requiring the use of high ionic strength models. There
may be other instances in which the use of low ionic strength models may be inappropriate.

There are two kinds of activity coefficients that a model should be able to provide. The first is the
molal activity coefficient of a solute species (denoted by γi). This is subsequently used to compute
the thermodynamic activity of the corresponding species (denoted by ai). The activity of a species
is obtained by multiplying the molality (molal concentration) of the species (denoted by mi) by
the molal activity coefficient:

ai = miγi. (5.10)

This activity is then used in various equations describing thermodynamic equilibrium and chemical
kinetics.

The second kind of activity coefficient, the rational activity coefficient, pertains to the solvent,
water (w). Its activity coefficient is denoted by λw to emphasize that it is different in kind: it
is a mole fraction activity coefficient. The thermodynamic activity of water (aw) is obtained by
multiplying the mole fraction of water (Xw) by the activity coefficient of water:

aw = Xwλw. (5.11)

The activity of water is also different in kind from the activity of a solute species (a mole fraction
activity as opposed to a molal activity). In treating the thermodynamics of aqueous electrolyte
solutions, the activity of water and the activity of a solute species are almost always treated as
described above.

Activity coefficients are generally first calculated in logarithmic form (e.g., ln γi or log γi). In
practical usage, activity coefficients are used most often used in base-10 logarithmic form, being
converted from natural logarithm form as necessary. The conversion is illustrated by

log γi =
ln γi
ln(10)

. (5.12)

The conversion factor ln(10) is approximately equal to 2.303, and this value often appears in
equations in the literature in place of the exact factor. The approximate value should not be used in
this toolset, as it is insufficiently precise for accurate work. Instead the value should be calculated
using the same floating-point precision that will be used to calculate activity coefficients. This is
most efficiently done by calculating the value once and then storing it for subsequent use. It is noted
that “log” is somewhat ambiguous, in that the literature contains examples of it being used for both
natural and base-10 logarithms. In the present description given in this section (Section ??), it will
always refer to the base-10 logarithm.

36 ascemdoe.org November 20, 2024



Amanzi: Theory Guide

Activity coefficient model equations ideally satisfy thermodynamic consistency relations. The
value of consistency lies in allowing the possibility of accuracy at higher ionic strengths. Low
ionic strength models typically include inconsistent equations, but the numerical consequences
of the inconsistencies tend to be acceptable in the range of applicability of these models. For
electrolyte solutions, ? presents equations and methods for ensuring the development of consistent
equations and for testing the consistency of existing sets of equations. The easiest means of testing
for consistency is to use the cross-differentiation rule, which takes the following forms for solute-
solute and solvent-solute pairs:

∂ ln γj
∂mi

=
∂ ln γi
∂mj

, (5.13)

Nkg
w

∂ ln aw
∂mi

= −1−
∑
j

mj
∂ ln γi
∂mj

(5.14)

where i and j denote different solute species and Nkg
w is the number of moles of water in a 1 kg

mass (approximately 55.51).

5.2.2 The Debye-Hückel Equations

Activity coefficient model equations for electrolyte solutions generally include some type of Debye-
Hückel term to represent the effects of long-range electrical forces. The most common represen-
tation is based on the “extended” Debye-Hückel equation, which for the activity coefficient of an
ionic solute species is given by

log γi = −Aγ,10z2i

( √
Ī

1 + b
√
Ī

)
. (5.15)

HereAγ,10 is the Debye-Hückel “A” parameter for the activity coefficient (hence the subscript “γ”),
modified for consistency with the base-10 logarithmic activity coefficient on the left-hand-side of
the equation (hence the additional subscript, “10”). To assist in avoiding potential confusion, Aγ,10
should have a value of 0.5114 at 25◦C and 1.013 bar pressure. The parameter “b” is conceptually
the product of the Debye-Hückel “B” parameter for the activity coefficient (Bγ) and a length that
corresponds to either the diameter of the ion in question or a characteristic distance of closest
approach to itself or any other ion in solution. Practical models treat this in various ways. Some
assign a constant value, typically 1.0, 1.2, or 1.5. Others use the product of Bγ (which has a known
temperature and pressure dependence) and some sort of length parameter.

The equation for the activity of water corresponding to the extended Debye-Hückel equation is

log aw =
1

Nkg
w

(
−
∑

imi

ln(10)
+

2

3
Aγ,10Ī

3/2ς(b
√
Ī)

)
. (5.16)

where the summation over molalities spans all solute species (all aqueous species except the sol-
vent), and the function ς(x) in Equation (??) is given by

ς(x) =
3

x3

(
1 + x− 1

1 + x
− 2 ln(1 + x)

)
, (5.17)
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where x serves the purpose of a generic variable. If the activity coefficient of water is desired, it
can be obtained from the relation

log λw = log aw − log(Xw), (5.18)

where the mole fraction of water is given by

Xw =
Nkg
w

Nkg
w +

∑
imi

. (5.19)

The activity of water is closely related to the osmotic coefficient, φ:

φ = −
(

Nkg
w∑
imi

)
ln aw. (5.20)

All forms of the extended Debye-Hückel equation are consistent with the Debye-Hückel Limiting
Law (DHLL):

lim
Ī→0

log γi = −Aγ,10z2i
√
Ī . (5.21)

The limiting law is a critical feature describing the behavior of ionic activity coefficients in the
range of very low ionic strength. The ionic activity coefficient plunges rapidly from unity as ionic
strength increases from zero. There is no comparable limiting relation for the activity of water, due
to the compositional dependence on both the ionic strength and the sum of solute molalities.

In general, the extended Debye-Hückel equation is not useful for significant practical modeling,
as it is accurate only in very dilute aqueous solutions. If only monovalent ions are present, it may
be useful for Ī < 0.1 molal. In the presence of higher valence ions, the maximum range becomes
more compressed. Most practical models therefore extend the “extended” Debye-Hückel equation
by adding additional terms or otherwise adding to the mathematical complexity, in the process
introducing more model parameters.

The activity coefficient models that will be available in this toolset include the Davies equation,
the B-dot equation, Pitzer’s equations, Extended UNIQUAC, and NEA-SIT. The models are first
addressed, followed by the discussion on rescaling the activity coefficients.

5.2.3 The Davies Equation

The ? equation is a commonly used at low ionic strength (less than about 1 molal) model. The
activity coefficient of an aqueous solute species is given by

log γi = −Aγ,10z2i

( √
Ī

1 +
√
Ī
− dĪ

)
. (5.22)

Here d is a constant, either 0.2 as in EQ3/6 (?) or 0.3 as in PHREEQC (Parkhurst and Appelo,
1999). If the “dĪ” part is dropped, this equation reduces to the extended Debye-Hückel form
with b set to unity. It can be shown that the full equation satisfies the solute-solute-form of the
cross-differentiation rule.
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For the activity coefficient of water, the matching equation used in EQ3/6 for the activity of water
is

log aw =
1

Nkg
w

(
−
∑

imi

ln(10)
+

2

3
Aγ,10Ī

3
2 ς(
√
Ī)− dAγ,10Ī

2

)
. (5.23)

where all parameters and the ς(x) function have been previously introduced (See Section ??). This
equation is a corrected version of that given by ? (Equation 86 in that document). Here a factor of
2 in the “d” term has been removed, and d substitutes for the original constant value of 0.2. This
equation is quasi-consistent with the equation for the activity coefficient of a solution species, in
the sense that the solvent-solute form of the cross-differentiation rule is satisfied for the case of a
pure solution of a uni-univalent electrolyte, such as sodium chloride. It does not satisfy this rule in
the general case.

The equation used by PHREEQC is symbolically equivalent to

aw = 1− 1

Nkg
w

∑
i

mi. (5.24)

As given by the source (Parkhurst and Appelo, 1999, p. 17), the factor 1/Nkg
w is replaced by a con-

stant value of 0.017, which is rather approximate, and the molality is replaced by the mole number
divided by the number of kg of solvent water (this substitution is exact). This equation is based on
ignoring the activity coefficient of water and replacing the mole fraction with a limiting approxi-
mation of itself. Hence, the activity of water is given in direct form, rather than logarithmically.

For the present toolset, it is recommended that the Davies model be implemented as two options,
one (Davies-EQ3/6) consistent with the implementation in EQ3/6, the other (Davies-PHREEQC),
with PHREEQC. This will permit direct comparison with both codes.

The Davies equation predicts a unit activity coefficient for electrically neutral solute species. This
is known to be generally inaccurate, as the activity coefficients of non-polar neutral solutes such as
O2(aq) and N2(aq) should increase with ionic strength (the “salting out” effect), while the activity
coefficients of polar species such as CaSO4(aq) and MgSO4(aq) should decrease (“salting-in”).

In practice, the Davies equation is mainly used for low temperatures (near 25◦C) and near-atmospheric
pressures. The Aγ,10 parameter has temperature and pressure dependence. As long as this is ac-
counted for, the Davies equation model could be applied in principle at higher temperatures and
pressures. However, it needs to be kept in mind that the 0.2 constant was obtained by fitting data
to solutions for temperature near 25◦C and for atmospheric pressure. The accuracy of the model is
therefore likely to deteriorate at higher temperatures and pressures.

5.2.4 The B-dot Equation

The B-dot equation of ? is an alternative low ionic strength model. The activity coefficient of a
solute species is given by

log γi = − Aγ,10z
2
i

√
Ī

1 + åiBγ

√
Ī
+ ḂĪ. (5.25)

where åi is the diameter of the ith solute species, Bγ is the Debye-Hückel B parameter for the
activity coefficient, and Ḃ is the “B-dot” parameter. Removing the ḂĪ term and setting åBγ to
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unity, this equation reduces to the Davies equation with the dĪ term omitted. Comparison with the
Davies equation brings up two points. The first is that the B-dot model has more parameters. The
Bγ parameter appears, and each solute species has an assigned diameter. The “B-dot” parameter
itself is an additional parameter.

It can be shown that the B-dot equation does not satisfy the solute-solute form of the cross-
differentiation rule. There is an issue with the first term on the right hand side in that the rule
can only be satisfied if all aqueous ions have the same diameter. There is an issue with the second
term in that the rule is only satisfied if the charge number squared is the same for all ions, as would
be the case for example in a pure sodium chloride solution.

For an electrically neutral species, the B-dot equation reduces to

log γi = ḂĪ. (5.26)

As the Ḃ parameter is generally assigned a positive value, this would provide for some measure
of “salting-out.” By tradition, however, the B-dot equation is not applied to neutral solute species,
and it will not be so applied in the present toolset. For non-polar neutral species, the common
practice is to assign an approximation for the activity coefficient of CO2(aq) in otherwise pure
sodium chloride solution of the same ionic strength. The approximation used in EQ3/6 (based on
?, and which will be adopted for the present toolset) is

ln γi =

(
C + FT +

G

T

)
I − (E +HT )

(
Ī

Ī + 1

)
. (5.27)

Here T is the absolute temperature and C = -1.0312, F = 0.0012806, G = 255.9, E = 0.4445, and
H = -0.001606. Note that the result is presented in terms of the natural logarithm. For a polar
aqueous species, the EQ3/6 practice (which will be adopted in the present toolset) is to use

log γi = 0. (5.28)

Because different equations are used for electrically neutral solute species than for ionic species,
there is necessarily an additional set of violations of the solute-solute cross-differentiation rule.

For the activity of water, the B-dot model as implemented in EQ3/6 (and recommended for the
present toolset) is to use the equation

log aw =
1

Nkg
w

(
−
∑

imi

ln(10)
+

2

3
Aγ,10Ī

3
2σ(̊aBγ

√
Ī)− ḂĪ2

)
. (5.29)

All the parameters here have been introduced previously, except for the unsubscripted å, which is
conceptually an effective solute species diameter. In practice, this is assigned a constant value of
4.0 angstroms.

The above equation for the activity of water is quasi-consistent with the solvent-solute form of
the cross-differentiation rule. The term containing the effective solute diameter leads to inconsis-
tency unless every ionic solute has a matching diameter value. The term containing Ḃ leads to
inconsistency unless the solution is a pure solution of a uni-univalent electrolyte such as sodium
chloride.
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The thermodynamic inconsistencies noted above introduce some level of inaccuracy into the model,
tending to negate the improvement that might be expected by introducing more parameters (e.g.,
a diameter value specific to each solute species). Thus, for temperature near 25◦C and near-
atmospheric pressure, the B-dot model is probably as good as the Davies equation model.

The B-dot model does have an advantage over the Davies equation model in that it is better pa-
rameterized to cover a wide range of temperature and pressure. In addition to Aγ,10, the Bγand
Ḃ parameters are treated as functions of temperature and pressure. The Aγ,10 and Bγ parameters
have values derived from pure theory (and models for pure water properties). The Ḃ parameter is
obtained by fitting to data for pure sodium chloride solutions. The ion size parameters are treated
as constant with respect to temperature and pressure.

In regard to solute species, diameters are only necessary for ionic species. Some means needs to
be provided to specify (as on a supporting thermodynamic data file) whether a neutral species is
to be treated as non-polar or polar. All the necessary information could be folded into a diameter
array or equivalent structure, in which the values in the case of neutral species would not be ac-
tual diameters, but code values specifying non-polar or polar type. However, a separate flagging
structure should be utilized, as the variable type can then be something more appropriate (integer
or logical) than the floating point necessary for actual diameters. Also, the structure for diameters
would then be free to include diameters for neutral solute species. Although such diameters are
not be used in the B-dot model, they might be usable in other models.
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5.2.5 Rescaling Ionic Activity Coefficients

The activity coefficient models described above include descriptions of individual ion activity
coefficients. This is problematic in that ionic activity coefficients and ionic activities are not
measurable for individual ions. These quantities are measurable only in combinations that cor-
respond to electrical neutrality. For activity coefficients, examples of such combinations include
log γH+ + log γCl− and 2 log γH+ + log γSO2−

4
; examples for activities are analogous. Molalities of

individual ions are measureable (or quantifiable by inference). Thus, if one could obtain or specify
the activity or activity coefficient of one single ion in an aqueous solution, one could then use this
as a reference to obtain the activities and activity coefficients of all other ions present in the same
solution.

The need to define activity coefficients and activities for individual ionic species is dealt with by the
use of a “splitting” convention. Such a convention is at least somewhat arbitrary, although it may be
guided in part by theoretical concerns. One could address the issue by adopting the results of model
equations for single ion activity coefficients. The model equations for these are all in part arbitrary,
implicitly including a splitting based on some combination of theoretical notions and pleasing
(but not necessarily unique) symmetry. The problem with just using the model equations in their
native form is that other conventions have been previously adopted into measurement practice,
particularly the measurement of pH. For accurate modeling consistent with standard analytical
chemistry practice, it becomes necessary to rescale the results of the model equations presented
above. This only affects the activity coefficients of ionic species. For most analytical splitting
conventions, some expression is specified for the activity coefficient of a reference ion, usually
Cl− or H+.

The most significant analytical splitting conventions for aqueous ions are tied to the definition of
the pH. Conceptually,

pH = − log aH+ . (5.30)

In order to provide a practical basis for measuring the pH, it is necessary to define the activity of
the hydrogen ion. The splitting convention used for this purpose then defines a pH scale. The
choice of pH scale further affects the definition of the redox potential, Eh.

In modern work, the dominant pH scale is the NBS scale, originated by the National Bureau of
Standards, now the National Institute of Standards and Technology. The NBS scale is based on the
Bates-Guggenhiem equation (?):

log γCl− = − Aγ,10
√
Ī

1 + 1.5
√
Ī
. (5.31)

This is a simple form of the extended Debye-Hückel equation. It defines the activity coefficient
of the chloride ion. It may be surprising that chloride is used as the reference ion rather than the
hydrogen ion, which is more closely tied to the pH. What is apparent is that the Bates-Guggenheim
equation must give a result that is different from what would be obtained for the chloride ion using
say the Davies equation or the B-dot equation, or for that matter, from Pitzer’s equations. In the
range of low ionic strength (say less than 1 molal), the differences should be numerically small for
each of the three practical models, as they and the Bates-Guggenheim equation all include some
form of extended Debye-Hückel model and thus are all consistent with the Debye-Hückel limiting
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law. At higher ionic strength, however, the differences can be substantial (the equivalent of several
pH units).

The Bates-Guggenheim equation can be applied whether or not there is any chloride in aqueous
solution, as the equation is sufficient to calculate the specified activity coefficient. The charge
number of -1 is effectively built into the equation.

The Bates-Guggenheim equation (the NBS pH scale) is effectively built in to the calibration of all
modern means of measuring the pH, whether in pH calibration buffers or pH paper. EQ3/6 for
example by default rescales ionic activity coefficients computed from the models to be consistent
with the NBS pH scale (other options, including no rescaling, may be offered). Rescaling from
one scale (scale “1”) to another (scale “2”) is accomplished using

log γ
(2)
i = log γ

(1)
i +

zi
zj

(
log γ

(2)
j − log γ

(1)
j

)
. (5.32)

Here j denotes the reference ion (here Cl−) and i denotes any ion (including the reference ion).
In the present context, scale “1” is usually that implied by a model equation and scale “2” is the
desired scale.

An alternative convention is to choose

log γH+ = 0. (5.33)

For the hydrogen ion, this results in

pH = − logmH+ . (5.34)

as the activity and molality of the hydrogen ion are numerically equivalent. The rescaling of ionic
activity coefficients for consistency does not give an analogous result for other ions. EQ3/6 allows
rescaling using this convention as an option, but it has limited utility and it not recommended as a
general option in the present toolset.

The definition of the pH in terms of molality (“pmH”) is significant independent of rescaling. Thus
one has simply

pmH = − logmH+ . (5.35)

In concentrated electrolyte solutions (e.g., WIPP, Hanford tanks), pmH is often more useful for
assessing the acidity/basicity of a solution than the NBS pH. The NBS pH cannot be accurately
measured in concentrated solutions owing to liquid junction effects with electrodes and interfer-
ences with dyes. Also, the Bates-Guggenheim equation (and the NBS pH scale itself) was origi-
nally intended for use only at low ionic strength. ? suggested application to solutions with ionic
strengths of no greater than 0.1 molal. Since then, however, the scale has been used at higher ionic
strengths. This has led to the problem that of two highly concentrated solutions with an NBS pH
of say 2, one might be acidic (in the sense that H+ is abundant) and the other not (in the sense that
H+ is not abundant). In other words, the common association of pH values with various degrees of
acidity/basicity (e.g., 7 is neutral) no longer applies.

Still other conventions and scales exist. However, for the present toolset only the following is
required. First, the default behavior will be to apply rescaling to the NBS scale. Second, the option
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will be available to use the basic model results without rescaling. Third, the pmH will be directly
calculated and included in the output. An option to rescale the activity coefficients for consistency
with the log γH+ = 0 convention will not be required.

5.3 Sorption

5.3.1 Overview

Sorption involves the attachment of dissolved and/or colloidal species to mineral or other solid
surfaces. Sorption has the effect of slowing the effective transport rate of a species through porous
media through its retardation effect. The retardation effect for a species, Rf , is given by (?)

Rf =
Vgw
Vsp

, (5.36)

where Vgw is the velocity of the groundwater and Vsp is the velocity of the species. A variety of
models have been used to describe sorption and can be broadly divided into those that describe it
as a bulk process versus those that are mineral or solid phase specific. The latter approach involves
the calculation of bulk sorption from the sum of sorption on individual solid phases, an assumption
referred to as Component Additivity. Within the class of bulk sorption models, a distinction can
be made between those which assume a finite number of sorption sites (these are referred to as
showing Langmuir type behavior and include the Langmuir isotherm itself and most surface com-
plexation and ion exchange models) and those that assume either an infinite sorption capacity or at
least a capacity that is not tightly constrained (these include the linear distribution coefficient and
the nonlinear Freundlich isotherm). Alternatively, one could also distinguish between single com-
ponent, non-competitive models (e.g., Langmuir and Freundlich) and multicomponent competitive
models (surface complexation and ion exchange).

Another possible distinction is between equilibrium and kinetic sorption models. In many cases,
the formulations for the equilibrium and kinetic cases differ only insofar as the kinetic case involves
involves a thermodynamic driving force (as in the equilibrium case), but modified by a finite rate
constant. In some cases, however, sorption is described as irreversible, which implies that there is
no back reaction (desorption).

5.3.2 Process Model Equations

Linear Distribution Coefficients (Kd). A simple approach to describe metal or ionic radionu-
clide sorption by a sediment,

Aaq ⇋ Aads, (5.37)

is to use a constant distribution coefficient, defined by:

Kd =
[Aads]

[Aaq]
, (5.38)

where Kd is the distribution coefficient (L/kg), [Aads] is the sorbed concentration (mol/kg) to the
bulk solid phase, and [Aaq] is the total dissolved concentration in groundwater (mol/L) (?). One of
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the key advantages of representing sorption with a distribution coefficient is that it can be easily
incorporated into reactive transport models used for migration predictions.

Equation (??) shows that if one assumes that the amount of sorption is proportional to the dissolved
concentration, then there is a linear relationship where the Kd value is the slope. In this simple
case, referred to as a linear isotherm, retardation of a concentration front in simple porous media
is given by

v̄

v̄c
= 1 +

ρb
n
Kd, (5.39)

where ρb is the bulk density, n the porosity, v̄ the average linear velocity of the groundwater and
v̄c the velocity of the point on the concentration profile where the concentration is half that of the
input concentration (?). Note that the ratio v̄/v̄c here is the retardation factor and represents the
retardation of the movement of front relative to the flowing groundwater. While this is a simplified
example, it serves to illustrate the key point that the Kd value directly influences predictions of
adsorbing metal or radionuclide mobility.

Assumptions and Applicability Sorption is proportional to the dissolved concentration. The
aqueous and adsorbed phases are in equilibrium.

Data Needs Typically Kd values are determined for a particular subsurface material from the
slope of a fitted line to the concentration of the sorbed species, Aads, plotted versus the dissolved
concentration of the same species,Aaq. These data may be derived from laboratory analyses, where
one typically varies the dissolved concentrations systematically, or they may be derived from in
situ field data. Since Kd values may be variable, and in particular a function of temperature, pH or
the redox state of the system (see below), it is often necessary to compile them in a lookup table
for use by a particular computer code.

Langmuir Isotherm. The Langmuir isotherm assumes that the sorption sites, S, on the surface
of a solid (absorbent) become occupied by an absorbate from the solution, A. Implying a 1:1
stoichiometry

S + A⇋ SA, (5.40)

where SA is the adsorbed species on the surface. At equilibrium, a standard mass action equation
can be written:

Kads,L =
[SA]

[S]{A}
, (5.41)

where the square brackets here refer to the concentration of the species or site, and the curly
brackets refer to the aqueous activity. Using the maximum concentration of surface sites, ST

[ST ] = [S] + [SA], (5.42)

one can write the Langmuir isotherm in its familiar hyperbolic form

[SA] = [ST ]
Kads{A}

1 +Kads{A}
. (5.43)
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Assumptions For the following, it is assumed that the surface and aqueous species are in equi-
librium.

Data Needs The equilbrium constant, Kads, is typically obtained from experimental data. It
depends on the specified absorbent and absorbate, and may be a function of temperature. It may
be calculated from:

Kads = exp

(
−∆G◦

ads

RT

)
, (5.44)

where ∆G is the change in free energy for the reaction, typically obtained from a database, R is
the gas constant and T is the temperature.

Freundlich. The Freundlich isotherm is another equilibrium model for sorption of absorabte A
onto sorption sites, S

S + A⇋ SA. (5.45)

Represented by the mass action equation:

Kads,F =
[SA]

{A}βF
, (5.46)

where the square brackets again refer to the concentration of the species or site, the curly brackets
refer to the aqueous activity. Kads,F and βF are the Freundlich parameters (e.g. ??).

Assumptions For the following, it is assumed that the surface and aqueous species are in equi-
librium.

Data Needs The Freundlich parameters, Kads,F and n, are generally obtained by fits to exper-
imental data for a specific surface and aqueous species. They will generally be obtained from a
database, and may be represented by a functional form or lookup table.

Multi-site, Multi-component Ion Exchange. An ion exchange reaction can be described via a
mass action expression with an associated equilibrium constant (???). The exchange reaction can
be written in generic form as

vAClu(aq) + uBXν(s) ⇋ uBClν(aq) + vAXu(s), (5.47)

where X refers to the exchange site occupied by the cations Au+ and Bv+. The equilibrium con-
stant, Keq, for this reaction can be written as (?)

Keq =
{BClν}u{AXu}ν

{AClu}ν{BXν}u
, (5.48)

where the curly braces refer to the thermodynamic activities. Several activity conventions are in
wide use. One possibility is the Gaines-Thomas activity convention, which assumes a reaction
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stoichiometry of the following form (?), written here assuming the Cs+ is the relevant cation of
interest

Cs+ + (1/z)MX(i)z ⇋ CsX(i) + (1/z)M z+, (5.49)

where M is the competing cation (Na+, K+, Ca++), z is its charge, and X(i) refers to the ith type
of exchange site. In the Gaines-Thomas convention, each exchange site, X(i) has a charge of -1.
The activities of adsorbed species correspond to the charge equivalent fractions, β(i)M ,

β(i)M =
zMq(i)M∑
M zMq(i)M

= {X(i)M}, (5.50)

where zM is the charge of cation M , q(i)M is the concentration of adsorbed cation M in exchange
site i (moles/g), and the curly brackets denote activities. The Gapon activity convention is obtained
by writing the reactions in every case with a single exchanger (?). Alternatively, the Vanselow
convention (?) describes the exchanger activity with mole fractions

β(i)M =
q(i)M∑
M q(i)M

= {X(i)M}. (5.51)

The exchange reactions can then be used to write a mass action equation for binary Cs-M exchange:

KM/Cs =
β(i)

1/z
M {Cs+}

β(i)Cs{M z+}1/z
(5.52)

=
{X(i)M}1/z{Cs+}
{X(i)Cs}{M z+}1/z

. (5.53)

In a single-site ion exchange model, the CEC is equal to the sum of the charge equivalent concen-
trations of the adsorbed cations:

CEC =
∑
M

zMqM , (5.54)

while in a multi-site model, the CEC is the charge summed over all of the cation exchange sites
(??)

CEC =
∑
i

∑
M

zMq(i)M . (5.55)

Assumptions For the following, it is assumed that the surface and aqueous species are in equi-
librium.

Surface Complexation. An alternative approach that allows a modeler to describe sorption while
simultaneously considering variable chemical conditions in the subsurface is a surface complexa-
tion model (?). In this approach, the sorbing sediment surfaces are considered to possess surface
functional groups that can form complexes analogous to the formation of aqueous complexes in
solution. These surface reactions include proton exchange, cation binding and anion binding via
ligand exchange at surface hydroxil sites (represented here as XOH to avoid confusion with other
chemical species). For example, the sorption of a metal could be represented as

XOH +M z+ ⇋ XOM z+−1 +H+. (5.56)
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At equilibrium, the sorption reactions can be described by the mass law equation

Kapp =
[XOM z+−1] {H+}
[XOH] {M z+}

, (5.57)

where Kapp is referred to as the apparent equilibrium constant, because it includes surface charge
effects and hence is dependent on the extent of surface ionization (?), {i} is the thermodynamic
activity of aqueous species i, and the terms in square brackets represent the concentration of surface
complexes (mol/kg).

Surface complexation differs from the simpler isotherm and ion-exchange models in several impor-
tant ways. Surface complexation is based on the electrical double layer (EDL) theory. EDL theory
assumes that the surface charge of a sorbent in contact with solution generates an electrostatic
potential that declines rapidly away from the sorbent surface, creating an electrostatic field. An
additional energetic term accounting for the work needed for the aqueous species to travel across
the surface electric field is required:

∆Gads = ∆Gintr +∆Gcoul

= ∆Gintr + (∆Gψ=0 −∆Gψ=ψ0)

= ∆Gintr − zFψ0. (5.58)

where ∆Gads is the free energy change of the overall adsorption reaction, ∆Gintr and ∆Gcoul

are the free energy change due to chemical bonding and to the electrostatic work (Coulombic
attraction), respectively, z is the charge of the surface species, F the Faraday’s constant (96485
C/mol), and ψ0 is the mean surface potential (V ). Since

∆G = −RTlnK, (5.59)

Equation (??) can be rewritten as

Kapp = Kint exp

(
zFψ0

RT

)
, (5.60)

where R is the gas constant (8.314 J/mol/K), T is the absolute temperature (K), and Kint is the
intrinsic equilibrium constant which does not depend on the surface charge.

Bulk and Mineral Specific Surface Complexation. There are two major approaches for apply-
ing the surface complexation concept to soils and sediments: the Component Additivity (CA) and
Generalized Composite (GC) approaches (??). In the CA approach, it is assumed that a mineral
assemblage is composed of a mixture of one or more reference phases, whose surface chemical
reactions are known from independent studies of each phase (e.g. ???). Based on a measurement
of the relative amounts or surface areas of each mineral present in the soil or sediment, sorption
by the mixture of phases can be predicted by an equilibrium calculation, without any fitting of ex-
perimental data for the mixture. CA model predictions are sometimes made by assuming that one
mineral component dominates sorption (????), allowing a straightforward equilibrium calculation,
if the exposed surface area of that mineral component in the soil or sediment can be quantified.

48 ascemdoe.org November 20, 2024



Amanzi: Theory Guide

In the GC approach, the surface of the mineral assemblage is considered too complex to be quan-
tified in terms of the contributions of individual phases to sorption and/or that the contribution of
individual components is not additive. The complexity is caused, in part, by the difficulties in
quantifying the electrical field and proportions of surface functional groups at the mineral-water
interface in the mixture of mineral phases and associated surface coatings. In the GC approach, it
is assumed that sorption can be described by mass laws written with “generic” surface functional
groups, with the stoichiometry and formation constants for each mass law determined by fitting
experimental data for the mineral assemblage as a whole (???). The GC modeling approach has
generally been applied using a non-electrostatic model (NEM), which considers surface equilibria
strictly as chemical reactions without explicit correction for electrostatic attraction or repulsion
(???). In an NEM, the apparent binding constants and stoichiometry of the mass action equations
are derived by fitting the macroscopic dependence of adsorption as a function of pH (?). Because
of the exclusion of electrical double layer terms, the mass action equations are not expected to
provide accurate representations of the stoichiometry of the reactions at the molecular scale, how-
ever, the surface reactions can still be coupled with aqueous complexation reactions to provide
simulations of macroscopic sorption as a function of aqueous chemical conditions.

Although there are differences between the GC and CA approaches, they are very similar with
respect to their scientific basis. The following concepts form the basic tenets of both GC and CA
modelling approaches (?):

1. Mineral surfaces are composed of chemical functional groups that can react with dissolved
solutes to form surface complexes (coordinated complexes or ion pairs) in a manner analo-
gous to aqueous complexation reactions in homogeneous solutions.

2. The equilibria of surface complexation and ionization reactions can be described via mass
law equations, either with or without correction factors applied for electrostatic attraction to
or repulsion from the surface.

3. The apparent binding constants determined for the mass law equations of surface complex-
ation and ionization reactions are semi-empirical parameters related to thermodynamic con-
stants via rational activity coefficients for surface species.

Both CA and GC models may:

1. be coupled to the same critically reviewed aqueous thermodynamic data

2. use spectroscopic data to constrain and/or determine surface complex chemical composition
and stoichiometry, and

3. use the same mass laws and surface species.

The differences among the model approaches lie primarily in the manner in which the models are
calibrated and assumptions about various model parameters (in particular, whether the contribu-
tions of the various mineral phases to sorption and electrostatic fields can be considered as addi-
tive). CA models have almost always been applied using mass laws with electrostatic correction
factors, while GC models have not usually used these factors.
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Experimental and Modeling Issues Associated with SCMs for Soils and Sediments. Com-
mon to all applications of surface complexation approaches in soils and sediments is an initial
characterization with respect to surface area, bulk mineralogy, and clay and organic carbon content.
In addition, if the sediment is already contaminated with a metal or radionuclide, a measurement
of the labile fraction of the contaminant needs to be determined (???).

In the GC approach, laboratory experiments are conducted with the field site sediments across
the range of chemical conditions that are relevant to the scenarios of the physical and temporal
modeling domains. Then, mass law relationships are derived that describe the change in metal or
radionuclide sorption with variations in the aqueous chemical conditions (?). Total surface func-
tional groups are typically estimated from surface area measurements. The number of surface site
types and surface binding reactions is a practical modeling decision made based on the goodness-
of-fit and the desired number of modeling parameters (?).

In the CA modeling approach, after the sediment mineralogy is known, an estimate of the dis-
tribution of mineral surface areas is made. This can be done by simply assuming that the bulk
weight abundances of various mineral phases are related to the distribution of functional groups at
the sediment surface. For example, if quartz represents 60% by weight of the sediment, then an
initial estimate could be that 60% of the surface area is represented by the quartz surfaces. Then
a model of metal or radionuclide adsorption on quartz (as a function of chemical conditions rel-
evant to the field site) is chosen from available literature data. Similar models for other minerals
in the sediment are also catalogued. In some cases, model parameters may need to be re-derived
from the original experimental data to develop a dataset that is self-consistent. In particular, this
may be necessary if different electrical double layer models were used in the reference mineral
models. Other approaches for estimating the distribution of mineral surface areas may be used,
including chemical extractions and other methods (??). Once the component mineral models have
been chosen, a predictive calculation of metal or radionuclide sorption for a specific set of chemical
conditions can be made.

Possible limitations inherent to the surface complexation approach include poor representation
of: a) surface functional groups, b) surface area, c) electrical double layer properties, d) surface
species, e) surface binding constants, and f) competing surface reactions and their electrostatic
effects. These limitations exist for both GC and CA modeling approaches, but the GC approach
attempts to resolve some of the issues by using empirical data to overcome unknown factors and
unmeasured parameters. For example, consider the representation of surface functional groups:
Assume that only silanol, aluminol, ferrinol, and clay mineral edge sites are of importance in a
particular sediment sample. At present it is very difficult or expensive to determine the distribu-
tion of mineral surface areas in a mixed mineral assemblage. Extractions, X-ray diffraction, and
surface spectroscopies have been used by various investigators, but each of these methods pro-
vides estimates that are difficult to confirm independently. This uncertainty is circumvented in the
GC approach by assuming that the distribution of site types is an unknowable quantity, and only
generic sites are used. However, this requires that experimental data for the metal or radionuclide
sorption on a site-specific sediment sample are collected, whereas in principle at least, additional
characterization experiments are not needed for the CA modeling approach.
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Quantifying Surface Sites Surface area is an important experimental quantity to be character-
ized in all surface complexation approaches. Typically a mixed mineral assemblage is character-
ized by BET analysis of nitrogen gas adsorption. Adjustments may need to be made for samples
that contain high abundances of clay minerals, depending on whether there is evidence of sorption
on the basal planes of clay mineral particles. Many investigators have concluded that surface func-
tional groups of the basal planes are unreactive for metal and radionuclide sorption, and therefore
the surface area of the basal planes does not need to be included in most applications. Fortunately,
the BET method does not typically measure the surface area of the basal planes. In GC applica-
tions, the surface area is typically used in a straightforward manner to quantify the total abundance
of surface sites using a conversion factor. In CA applications, however, the surface area should be
distributed among different functional group types.

Multiple site-types are commonly used in formulating SCMs and approximate the nonlinear isotherms
commonly observed for cation adsorption on well-characterized oxide mineral phases (??). Pos-
tulating multiple site-types is also important for simulating peak tailing observed in experimental
studies of U(VI) transport in columns (?). Reactive transport simulations that use multisite adsorp-
tion models can also simulate significant peak tailing in field-scale simulations (????).

Sub-models

1. Non-electrostatic Models: EDL models differ in whether coulombic attraction or repulsion
terms are considered in the mass laws of surface reactions. A non-electrostatic EDL means
that the term

exp

(
zFψ0

RT

)
(5.61)

in Equation (??) need not be considered. While electrical double layer (EDL) models may
represent these terms well for simple systems with single mineral phases, the approaches for
treating these terms in mixed mineral assemblages have not been studied. In Component
Additivity (CA) (??) applications to sediments, typically authors assume that the EDL prop-
erties of pure, clean mineral phases investigated remain the same in mixed mineral assem-
blages (?). This ignores the likely effects of surface contaminants (adsorbed major solutes
such as silicate, organic compounds, etc.) and the overlapping EDL regions of particles that
are known to change coulombic terms. In Generalized Composite (GC) approaches (??),
the coulombic attraction or repulsion terms are not included, but are instead built into the
semi-empirical model calibration of reaction stoichiometries and binding constants to exper-
imental data. That is, whatever EDL forces exist, they are lumped into the model fitting of
reactions and binding constants. In each case, there is inherent uncertainty in the modeling
approach. The errors within the GC model may not be that significant because of model
calibration to experimental data, but the error is only minimized by confining model calcu-
lations to chemical conditions interpolated between those investigated in laboratory experi-
ments. Extrapolation of any non-electrostatic model to uninvestigated chemical conditions
is unwise because the EDL forces for those conditions will not necessarily be captured accu-
rately by the model calibration. In addition the formation of unknown surface species may
not be realized if calculations are extrapolated to chemical conditions not investigated at all.
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2. Electrostatic models: When the coulombic attraction or repulsion terms is considered as
shown in Equation (??), the electrostatic models differs also among themselves in how they
conceptualize the structure of the double-layer and describe changes in surface potential and
surface charge from the surface of the sorbent phase to the bulk solution. In the constant
capacity and diffuse-layer models, all adsorbed species are considered specifically adsorbed
at the zero plane while the triple layer model can assign adsorbed species to either a zero
plane or more distant plane. The constant capacity and diffuse-layer model are elaborated in
the following sections.

(a) Constant Capacitance The constant capacitance model is a special case of the diffuse-
layer model. Both models are based on the assumption that all the species are adsorbed
in the same layer and a diffuse layer of counterions constitutes the transition to ho-
mogenous solution. Additionally, it is assumed that the surface potentials are small,
or the double layer has been compressed (very high ionic strength). However, differ-
ently from the diffuse-layer model, the relationship between the surface charge and the
potential is assumed to be linear:

σ = Cψ, (5.62)

where σ is the surface charge, C m−2, ψ is the potential at the surface, V , and C is a
constant capacitance value, C V −1 m−2, to be obtained from fitting experimental data.
Equation (??) is solved for the potential and substituted into Equation (??).

(b) Diffuse Double Layer Model The diffuse layer model has been described in great
detail by ? and was applied to adsorption of metals on iron oxide surfaces. In the
diffuse layer model, the solid-water interface is composed of two layers: a layer of
surface-bound complexes and a diffuse layer of counter ions in solution. The surface
charge is calculated from the total surface species adsorbed on the layer:

σp =
F

A

Ns∑
k=1

zkyk. (5.63)

Here A is the surface area sorbent per liter solution (m2/L), F is the Faraday constant
(96, 480C/mol), zk is the charge of the ion, and yk is the concentration (mol/L) of
surface bound ions in the Stern Layer. According to the Gouy-Chapman theory, the
surface charge density σp (C/m2) is related to the potential at the surface (volts) by:

σp = (8RTϵR ϵ0 Ce × 103)1/2 sinh

(
zFψ0

2RT

)
, (5.64)

where R is the molar gas constant (8.314 Jmol−1K−1), Ce is the molar electrolyte
concentration (M ), z is the electrolyte charge, T is the absolute temperature (K), ϵR is
the relative dielectric constant of water (ϵ = 78.5 at 25◦C), and ϵ0 is the permittivity of
free space (8.854 × 10−12 C V −1m−1). Equation (??) is only valid for a symmetrical
electrolyte, the anion and cation must have the same charge. Note that C the unit
(coulombs or celcius) is not a concentration. Capacitance is not solved for explicitly,
but is implicitly accounted for in Equation (??). It is common to use the linearized
version of Equation (??) for low values of the potential:

σp = ϵ ϵ0κψ0, (5.65)
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where 1/κ (m) is the double-layer thickness defined as

1

κ
=

(
ϵ ϵ0RT

2F 2 · 1000 I

)1/2

, (5.66)

where I is the ionic strength mol L−1. The first term of Equation (??), (8RTϵ ϵ0Ce ×
103)1/2, can be rewritten at 25◦C:

σp = 0.1174 C1/2
e sinh

(
zFψd
2RT

)
. (5.67)

Therefore, in the diffuse-layer model, the value of the capacitance C relating the surface
charge and the potential can be calculated based on theoretical considerations instead
of being an experimental fitting parameter.

(c) Triple Layer Model The triple layer model is similar to the double layer model, but
divides the sorbed species into two layers, Figure ??. Strongly sorbed species are
located close to the surface, the zero plane, while weakly sorbed species reside in the
beta plane, seperated from the surface by the strongly sorbed species and hydration
layers (e.g. ?). Further out from the surface is a diffuse layer and the bulk solution
similar to the double layer.
The charge balance equation for the triple layer model is

σ0 + σβ + σd = 0, (5.68)

where σ0, σβ and σd are the net surface charges in the zero, beta and diffuse planes
respectively, (C/m2). The net surface charge in the zero plane is given by:

σ0 =
F

A

Ns∑
k=1

zky
0
k, (5.69)

where the variables are as defined in Equation (??) with the exception of y0k, which is
the concentration (mol/L) bound in the zero plane. Similarly, the net surface charge of
the beta plane is

σβ =
F

A

Ns∑
k=1

zky
β
k , (5.70)

where yβk refers to the ions bound in the beta plane. Note that the composition of
the diffuse layer is not often calculated explicitly in either Triple Layer Model or the
Diffuse Double Layer Model, although a method to do so has been presented by ?.
The triple layer model assumes constant capacitances between the zero plane and beta
plane, C1, and the beta plane and d-plane, C2. These are related to the surface charges
and potentials by:

σ0 = C1 (ψ0 − ψβ) , (5.71)
σβ = C1 (ψβ − ψ0) + C2 (ψβ − ψd) , (5.72)
σd = C2 (ψd − ψβ) . (5.73)
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truncation are introduced and then implemented into the electri-
cal model by Leroy and Revil [1] in Section 3. The optimization
and the results of such approach are finally presented and dis-
cussed.

2. Electrical models

2.1. Diffuse-layer model: Basic equations

The negative surface charge of clay minerals under near-
neutral PH conditions (i.e., 7–8) is attributed to isomorphic
substitutions in the clay minerals lattice and complexation reac-
tions at the edge of the particles [1,3]. Ions of opposite charge,
referred to as counterions, are attracted to the surfaces of miner-
als in order to balance this negative charge and achieve the over-
all electroneutrality of the porous medium. As a result of these
interactions, an electrical potential distribution and related ions
distribution develops within the interparticle space of clay ma-
terials, as depicted in Fig. 1. Two major types of electrical mod-
els have been developed over the past century: the double-layer
model (DLM) and the triple-layer model (TLM) [2,8]. The most
widely used DLM is based on the simple Gouy–Chapman the-
ory. In this approach, an atmosphere of counterions, considered
as point charges, the diffuse layer is distributed according to a
Boltzmann distribution in the vicinity of the charged surface.
The second model (TLM) is based on the Stern–Grahame the-
ory, which introduces a more realistic finite size for ions and an
additional compact layer of bound counterions, the Stern layer,
between the charged surface and the diffuse layer. These mod-
els, first applied to colloidal suspensions and then to compacted
clays, have been undergoing almost continuous use and devel-
opment for a long time (see [2,4,6,8]; and, e.g., [1,14–17]).

The DLM is based on the resolution of the Poisson–
Boltzmann equation in the simple Gouy–Chapman description
of the electrical distribution in the pore water, assumed to con-
tain N different species. The Poisson equation describes the
distribution of an electrical potential ϕ (V) in the pore water.
For an infinite charged mineral surface, the Poisson equation is

(1)
d2ϕ

dx2 = −ρ

ε
,

where ε is the permittivity (F m−1) of the solution, considered
as a constant (dielectric constant taken to be 80), ρ is the volu-
metric charge density (C m−3), and x is the distance normal to
the charged surface. The volumetric charge density is given by

(2)ρ = e
∑

i

νiCi,

where e is the elementary charge (1.6 × 10−19 C), Ci the con-
centration of ions i in the pore space, and νi the valence of this
ion. The Boltzmann distribution gives the concentration of ions
i at distance x from the mineral surface,

(3)Ci(x) = Ci exp
(−νieϕ(x)

kBT

)
,

where Ci is the concentration of species i in the equilibrium
solution (i.e., the solution, eventually fictitious, that would be

Fig. 1. Sketch of the TLM at clay surface from Leroy and Revil [1]. (a) M+
represents a metal cation (e.g., Na+) and A− an anion (e.g., Cl−). OHP is the
outer Helmoltz plane. The d-plane is assimilated to the shear plane; i.e., ϕd ≈ ζ ,
where ζ is the zeta potential arising in electrokinetic phenomena. The β-plane
and o-plane are respectively the mean plane in of Stern layer and the surface of
the clay particle. (b) Sketch of the electrical potential in the cases of truncated
and untruncated diffuse layers.

in thermodynamic equilibrium with the clay, see [1,18,19]),
kB is the Boltzmann constant (1.38 × 10−23 J K−1), and T is
the temperature (K). Combining Eqs. (1)–(3), one obtains the
Poisson–Boltzmann equation:

(4)
d2ϕ

dx2 = −e

ε

N∑

i=1

νiCi exp
(−νieϕ

kBT

)
.

This equation can be solved for a simple Gouy–Chapman model
(no compact layer adjacent to charged surfaces) or in the diffuse
layer of a Stern–Grahame model. Equation (4) can be integrated
under two main boundary conditions: an infinitely developed
diffuse layer or interacting (truncated) diffuse layers. In the case
of a diffuse layer developed at infinity the boundary conditions
write are

(5)
dϕ

dx

∣∣∣∣
x→∞

= 0, ϕ|x→∞ = ϕl = 0.

In the case where a truncation occurs at x = r , they are

(6)
dϕ

dx

∣∣∣∣
x→r

= 0, ϕ|x→r = ϕl = ϕr.
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truncation are introduced and then implemented into the electri-
cal model by Leroy and Revil [1] in Section 3. The optimization
and the results of such approach are finally presented and dis-
cussed.

2. Electrical models

2.1. Diffuse-layer model: Basic equations

The negative surface charge of clay minerals under near-
neutral PH conditions (i.e., 7–8) is attributed to isomorphic
substitutions in the clay minerals lattice and complexation reac-
tions at the edge of the particles [1,3]. Ions of opposite charge,
referred to as counterions, are attracted to the surfaces of miner-
als in order to balance this negative charge and achieve the over-
all electroneutrality of the porous medium. As a result of these
interactions, an electrical potential distribution and related ions
distribution develops within the interparticle space of clay ma-
terials, as depicted in Fig. 1. Two major types of electrical mod-
els have been developed over the past century: the double-layer
model (DLM) and the triple-layer model (TLM) [2,8]. The most
widely used DLM is based on the simple Gouy–Chapman the-
ory. In this approach, an atmosphere of counterions, considered
as point charges, the diffuse layer is distributed according to a
Boltzmann distribution in the vicinity of the charged surface.
The second model (TLM) is based on the Stern–Grahame the-
ory, which introduces a more realistic finite size for ions and an
additional compact layer of bound counterions, the Stern layer,
between the charged surface and the diffuse layer. These mod-
els, first applied to colloidal suspensions and then to compacted
clays, have been undergoing almost continuous use and devel-
opment for a long time (see [2,4,6,8]; and, e.g., [1,14–17]).

The DLM is based on the resolution of the Poisson–
Boltzmann equation in the simple Gouy–Chapman description
of the electrical distribution in the pore water, assumed to con-
tain N different species. The Poisson equation describes the
distribution of an electrical potential ϕ (V) in the pore water.
For an infinite charged mineral surface, the Poisson equation is

(1)
d2ϕ

dx2 = −ρ

ε
,

where ε is the permittivity (F m−1) of the solution, considered
as a constant (dielectric constant taken to be 80), ρ is the volu-
metric charge density (C m−3), and x is the distance normal to
the charged surface. The volumetric charge density is given by

(2)ρ = e
∑

i

νiCi,

where e is the elementary charge (1.6 × 10−19 C), Ci the con-
centration of ions i in the pore space, and νi the valence of this
ion. The Boltzmann distribution gives the concentration of ions
i at distance x from the mineral surface,

(3)Ci(x) = Ci exp
(−νieϕ(x)

kBT

)
,

where Ci is the concentration of species i in the equilibrium
solution (i.e., the solution, eventually fictitious, that would be

Fig. 1. Sketch of the TLM at clay surface from Leroy and Revil [1]. (a) M+
represents a metal cation (e.g., Na+) and A− an anion (e.g., Cl−). OHP is the
outer Helmoltz plane. The d-plane is assimilated to the shear plane; i.e., ϕd ≈ ζ ,
where ζ is the zeta potential arising in electrokinetic phenomena. The β-plane
and o-plane are respectively the mean plane in of Stern layer and the surface of
the clay particle. (b) Sketch of the electrical potential in the cases of truncated
and untruncated diffuse layers.

in thermodynamic equilibrium with the clay, see [1,18,19]),
kB is the Boltzmann constant (1.38 × 10−23 J K−1), and T is
the temperature (K). Combining Eqs. (1)–(3), one obtains the
Poisson–Boltzmann equation:

(4)
d2ϕ

dx2 = −e

ε

N∑

i=1

νiCi exp
(−νieϕ

kBT

)
.

This equation can be solved for a simple Gouy–Chapman model
(no compact layer adjacent to charged surfaces) or in the diffuse
layer of a Stern–Grahame model. Equation (4) can be integrated
under two main boundary conditions: an infinitely developed
diffuse layer or interacting (truncated) diffuse layers. In the case
of a diffuse layer developed at infinity the boundary conditions
write are

(5)
dϕ

dx

∣∣∣∣
x→∞

= 0, ϕ|x→∞ = ϕl = 0.

In the case where a truncation occurs at x = r , they are

(6)
dϕ

dx

∣∣∣∣
x→r

= 0, ϕ|x→r = ϕl = ϕr.

Figure 4: Schematic of the TLM model from ?.
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5.3.3 Common Data Needs for Sorption Models

All sorption models will require access to a database of parameter values that are potentially inde-
pendent of the specific contaminated site under consideration. For example, the cation exchange
capacity (CEC) of a mineral like smectite or kaolinite can be described with a range of values.
However, it is likely that site-specific experimental data will have to be collected and either col-
lected in a site-specific database, or serve as the basis of a site-specific lookup table.

5.4 Mineral Precipitation and Dissolution

5.4.1 Overview

Mineral precipitation and dissolution are among the most important processes affecting the trans-
port of contaminants in the subsurface. They represent a class of heterogeneous reactions that
require a slightly different treatment than do reactions taking place within the same phase. Perhaps
most importantly, a kinetic treatment of mineral reactions requires the inclusion of the interfacial
area between the phases (water and mineral), or reactive surface area (see Section ??). The reac-
tive minerals may be considered as pure, in which case their treatment is simplified by the fact that
their activity is always equal to one, or they may be solid solutions, in which case their activities
have to be determined as in any other solution. Minerals may be assumed to be at equilibrium
with the aqueous solution, in which case they can be included in the total concentration in a fash-
ion similar to the way in which equilibrium secondary species are (Equation (??)), or they may
be treated kinetically. In most cases, it appears to be sufficient to treat the minerals kinetically,
since the equilibrium condition can be regained by using reaction rates that are sufficiently fast
relative to the time scales of interest (?). This approach also offers the advantage that the minerals
can potentially be removed as direct unknowns in the solution procedure within any one nonlinear
iteration cycle and updated only at the end of the timestep.

5.4.2 Kinetic Mineral-Water Rate Laws

The mineral reactions take the form ∑
j

νjmAjα ⇌ Mm, (5.74)

for mineral Mm with reaction rate Imα and stoichiometric coefficients νjm. The sum of the mineral
reaction rates affecting component j in phase α can be written as

Rjα =
∑
m

νjmImα. (5.75)

In most cases, this will involve water as the fluid phase. Equation (??) implies that component
j may be involved in any number of parallel mineral reaction pathways (even within the same
phase), with each potentially described by its own rate law. Changes in mineral concentrations are
described by the equation

∂ϕm
∂t

= V m

∑
α

Imα, (5.76)
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with molar volume V m and where the sum over α on the right-hand side is over all fluid phases
that react with the mth mineral.

We use a kinetic rate law based on the assumption that attachment and detachment of ions from
mineral surfaces is the rate–limiting step (i.e., a surface reaction-controlled rate law). It does not
mean, however, that one cannot obtain overall transport control on the mineral dissolution or pre-
cipitation rate since this depends on the magnitude of the reaction rate relative to the macroscopic
transport rates. The rate laws used for mineral precipitation and dissolution are based loosely on
transition state theory (???)).

TST Type Rate Law. This formulation gives the dependence of the rate on the saturation state
of the solution with respect to a particular mineral as a function of the ion activity product, Qs,
defined by

Qm =
Nc∏
j=1

a
νjm
j , (5.77)

where the aj are the activities of the primary species used in writing the dissolution reaction for
the mineral and νjm are stoichiometric reaction coefficients. In order to incorporate the strong pH
dependence of most mineral dissolution and precipitation reactions far from equilibrium, parallel
rate laws are used which are summed to give the overall reaction rate law for a particular mineral
in phase α

Imα = −Amα

{
Nrm∑
l=1

kl

(
Nc+Nx∏
i=1

apili

)[
1−

(
Qm

Km

)Ml

]nl
}
, (5.78)

where kl is the far from equilibrium dissolution rate constant for the lth parallel reaction, pil is the
exponential dependence on species i of the lth parallel reaction (i.e., the reaction order), Km is the
equilibrium constant, Nrm is the number of parallel reactions within phase α, and Amα refers to
the surface area of the reacting mineral in contact with phase α (m2 mineral m−3 porous medium).
The exponents nl and Ml allow for nonlinear dependencies on the affinity term and are normally
taken from experimental studies. The term

∏Nc+Nx

i=1 apili incorporates the effects of various ions in
solution on the far from equilibrium dissolution rate. This is most commonly the solution pH or
hydroxyl ion activity but may include other electrolytes as well.

The temperature dependence of the reaction rate constant can be expressed reasonably well via an
Arrhenius equation (?). Since many rate constants are reported at 25◦C, it is more convenient to
write the rate constant at some temperature as

k = k25 exp

[
−Ea

R

(
1

T
− 1

298.15

)]
, (5.79)

where Ea is the activation energy, k25 is the rate constant at 25◦C, R is the gas constant, and T is
temperature in the Kelvin scale.

Nonlinear Parallel Mineral Rate Laws. The rate law proposed by ?, based on experimental
data for albite, can be used for dissolution of silicate minerals. One rate law describes far from
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equilibrium dissolution behavior with a rate constant k2, and one rate law describes close to equi-
librium behavior (k1):

Imα◦ = Amα◦{k1[1− exp(−m1g
m2)] + k2[1− exp(−g)]m3}, (5.80)

where g represents |∆Gr|
RT

and the fitted parameters m1, m2 and m3 have values of 7.98 × 10−5,
3.81 and 1.17 (?). Here again the assumption is that the phase in question, α◦, is water. This
formulation is consistent with theoretical and experimental considerations which suggest that far-
from-equilibrium dissolution is characterized by the opening of etch pits and rapid propagation
of step waves, whereas close-to-equilibrium dissolution in the absence of etch pits is localized to
surface defects.

Dissolution Only. The simplest form of a dissolution only rate law would be a completely irre-
versible reaction with no back reaction (i.e., no precipitation). However, it may be desirable to have
a rate law which slows as equilibrium is approached, even though the back reaction cannot really
be demonstrated. Such a rate law is likely applicable to the dissolution of albite at low temperature,
since dissolution can be demonstrated while precipitation cannot. There is clear evidence in the
case of plagioclase that the rate of dissolution does slow, so it is important to be able to include
this in the code (?). Similarly, it was found that kaolinite could not be described with a single rate
law that was continuous for both dissolution and precipitation (?). To describe both precipitation
and dissolution of kaolinite, therefore, one can use distinct dissolution-only and precipitation-only
rate laws.

A rate law for dissolution only could in principle include any number of rate laws having a TST
(linear or nonlinear) form, but with the added code (here presented as a linear TST rate with no
dependence on dissolved or sorbed species far from equilibrium for the sake of simplicity):

Imα◦ =

{
−Amα◦

[
1−

(
Qm

Km

)]
if Imα◦ < 0,

0 if Imα◦ > 0.
(5.81)

Precipitation Only. A precipitation-only rate law takes a similar form to that of dissolution-only

Imα◦ =

{
Amα◦

[
1−

(
Qm

Km

)]
if Imα◦ > 0,

0 if Imα◦ < 0.
(5.82)

5.4.3 Assumptions and Applicability for Rate Laws

All of the rate laws described above use reactive surface area as an important parameter (see Sec-
tion ??). This is because most of the rates determined for mineral dissolution and precipitation
are based on normalization to physical surface area. Rate laws that consider the actual kind and
density of reactive sites are possible, but so far are difficult to implement at the field scale.
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5.4.4 Data Needs for Rate Laws

Data needs for mineral dissolution and precipitation are considerable and help to explain why
these processes have not always been included in subsurface environmental management codes.
In the case of mineral dissolution, it is necessary to know the reactive surface area of the dissolv-
ing mineral in contact with the mobile fluid phase. Reactive surface area within immobile zones
may contribute to the reactivity as well over long time scales via diffusion, so normally must be
considered as well (see Section ??).

Reactive surface area is an even more difficult topic in the case of mineral precipitation. Here
seeds may be created by nucleation, the seeds may growth via crystal growth and/or ripening and
agglomeration (?). Some proposed methods for including the evolution of reactive surface area are
given in Section ??.

5.4.5 Reactive Surface Area Evolution

Surface area is a key parameter affecting mineral dissolution and precipitation rates, as well as
the extent of aqueous species (e.g., contaminants) sorption onto mineral surfaces. Accordingly,
surface area is one of the variables that appear in mineral dissolution and precipitation rate laws,
Section ??, as well as in expressions needed to compute sorption site concentration for surface
complexation models, Section ??. The incorporation and treatment of surface areas into reactive
transport simulations can be broken down into two parts: initial surface areas, Equation (??), which
can be either directly input into the model if known, or estimated from input geometric data and
Equation (??) the actual evolution of surface areas (starting from input or calculated initial values)
upon mineral dissolution or precipitation.

Initial surface areas can be estimated from laboratory measurements for pure minerals or bulk
sediments. However, actual “reactive” surface areas in natural systems are largely unknown, and
have been shown to be typically smaller than laboratory measurements by several orders of mag-
nitude, and in much closer agreement with geometric mineral surface areas. For this reason, it is
not uncommon to estimate initial reactive surface areas from available geometric data on the size
and shape of mineral grains in porous media, or from data on fracture coverage (thus spacing) in
fractured rocks. This can be achieved either internally or externally prior to input, using relatively
simple mathematical expressions that do not require a high level of accuracy given the large vari-
ability of this parameter in natural systems. Alternatively, initial surface areas can be calibrated
during the course of reactive transport simulations.

Once initial (reactive) surface areas have been determined, the evolution of these areas upon min-
eral reaction needs to be captured in a manner that is consistent with field and experimental ob-
servations. For dissolving minerals in water-saturated systems, the evolution of reactive surface
area can be calculated, as a first approximation, by assuming some proportionality between the
amount of mineral present and its surface area. In such case, simple relationships can be devel-
oped relating surface area with mineral volume fraction, as shown further below. In unsaturated
systems, however, the problem is complicated by the fact that reactive surface areas are not only
function of mineral volume fractions, but also potentially of liquid saturation. While water serves
as the wetting phase in most cases, and thus in in contact with the solid grains in the medium, at
low saturations the coverage may become discontinuous. In this case, as a first approximation, the
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reactive surface area in contact with the phase (in the case of water, the ”wetting phase”) can be
assumed to be proportional to liquid saturation.

Predicting the evolution of surface area from the onset of, and during, mineral precipitation is less
straightforward. If a mineral forms on existing surfaces (of the same mineral and/or on surfaces
of existing precursors), the surface area can be assumed to evolve with some proportionality to the
current volume fraction of the mineral (or precursor mineral(s)). However, if a mineral actually nu-
cleates from solution, without precursors, a rigorous treatment of nucleation is required (?). Such
rigorous treatment, however, is deemed outside the scope of current model requirements, primarily
because input parameters for nucleation models are scarce for most minerals. Instead, an approxi-
mate treatment can be considered, yielding a trend of surface area evolution similar to that expected
upon nucleation (i.e., initially large surface areas upon nucleation decreasing with growth). This
general behavior can be captured by assuming that the initial (first formed, minimum) amount
and grain size of a nucleating mineral is known. Using these two (input) parameters (i.e., mini-
mum/initial volume fraction and grain size), the initial number of precipitating mineral grains and
their surface area can be easily computed for each mineral assuming simple grain geometries (e.g.,
spheres). Upon further precipitation, the evolution of surface area can then be computed as a func-
tion of mineral grain size, with mineral grains growing with some proportionality to the amount of
mineral precipitation. As such, surface areas initially decrease with increasing mineral amounts,
starting from initially large values at small initial grain sizes. For each mineral, this decrease in
surface area with growth can be assumed to continue until the surface area reaches some preset
(input) value corresponding to the surface area of the “bulk” mineral. At this point, the surface
area is assumed to evolve again with some direct proportionality to volume fraction, as in the case
of dissolving minerals.

The general methodology and formulation of the above-described approach are presented further
below. Note that because surface areas evolve relatively slowly in most systems, compared to
other parameters such as aqueous concentrations, surface areas can be computed explicitly. That
is, surface areas computed at the end of a flow/transport/reaction timestep can be used as values
for computing reactive transport at the next timestep.

Reactive Surface Area. The following general relationship can be used to compute reactive
surface areas of minerals as a function of time:

Amα = γm
(
ϕmASSm 1000 ρm + Amα

)
, (5.83)

where Amα is the effective reactive surface area of minerals (m2 mineral per m−3 porous medium),
γm is the fraction of the mineral’s surface area that is in contact with the phase (normally water),
ϕm is the volume fraction of the mineral, ASSm is the specific surface area of the mineral (m2/g),
ρM is the dry density of the mineral (kg m−3), and the factor of 1000 converts from kg to g. Amα is
the precursor surface area (m2 mineral m−3 medium). The fraction of the mineral surface area, γm,
in contact with the phase αmay be estimated from petrographic observations, fitted from field data,
or potentially estimated based on as yet unspecified relationship with phase (liquid) saturation.

An alternative expression for computing reactive surface area is given by ?

Amα = γmA
◦
mα

(
ϕm
ϕ◦
m

)
, (5.84)
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where A◦
mα and ϕ◦

m are the initial surface area and volume fraction of the mineral, respectively.

In the case of secondary minerals that are not initially present and where no precursor mineral
occurs with a non-zero volume fraction, both Eqns. (??) and (??) can be modified to include
a “threshold” mineral volume fraction that is used just for the purposes of calculating reactive
surface area. This mineral mass is considered to be derived from a short-lived nucleation event
that quickly creates surface area upon which subsequent mineral growth can occur. The threshold
volume fraction, ϕnucl, can be incorporated in the following way:

Amα =

{
γm (ϕmASSm 1000 ρm) if ϕm > ϕnuclm ,

γm (ϕnuclASSm 1000 ρm) if ϕm < ϕnuclm .
(5.85)

Such a procedure obviates the need for a more complicated formulation such as that found in ?.

Another option to be implemented involves a simple geometric method for calculating surface
area (?). If a simple cubic packing of spherical grains of radius r, is considered, then the cubic
arrangement of spheres yields, in a cube of side 4r and volume (4r)3, a total of 8 spheres, each
of radius r, volume 4πr3

3
, and area 4πr2. Thus the surface area Anucl (as the area of the spheres

divided by the volume of the cube) can be computed as

Amα = γm
0.5

r
, (5.86)

where r is the average grain size of the mineral. A more comprehensive approach involving crystal
size distributions has been proposed by ?.

Estimation of Reactive Surface Areas for Fractures. In a dual permeability (fracture-matrix)
system, the surface area of the fracture in contact with the mobile fluid phase, AF (in units of m2

fracture m−3 medium) is (?)

AF = φF
2

δ
, (5.87)

where φF is the fracture porosity and δ is the fracture aperture. To calculate the amount of mineral
surface area present along the fracture, one can use the volume fraction of the primary dissolving
phase as an estimate of the fraction of the fracture surface made up of that mineral

Amα = φFϕm
2

δ
. (5.88)

For precipitation, various schemes are possible. If the assumption is made that mineral precipita-
tion can occur anywhere along the fracture surface, then (??) can be used without modification.
For partially wetted fractures, a correction can be introduced to reduce the reactive surface area:

Amα = φFγmϕm
2

δ
, (5.89)

where γm is the fraction of the fracture actually in contact with the reactive phase (normally water).
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