
AMANZI-SDG, Revision 1.0

Amanzi: Developers’ Guide

November 20, 2024

United States Department of Energy

K. Lipnikov, LANL D. Moulton, LANL E. Coon, ORNL S. Naranjo, OSU

LA-UR-20-22491



Amanzi: Developers’ Guide

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government.
Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or
their employees, makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use
or results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned
rights; or

3. endorsement or recommendation of any specifically identified commercial product,
process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect
those of the United States Government, or its contractors, or subcontractors.

2 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Table of Contents

3 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

1 Introduction

1.1 Purpose and Scope of this Document

This document provides short description of Amanzi libraries, summarizes main design concepts,
provides step-by-step instructions and detailed comments for solving an abstract PDE, provides
essentials on creation of unit tests and web-pages for the user guide.

The intended audience includes (a) new developers of Amanzi and (b) software developers who
want to use the general purpose C++ Amanzi libraries in their work.

This document is not designed for the end-users who want to use Amanzi as a subsurface simulator
for environmental applications.

4 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

2 Design of Amanzi

In short, the guiding principles described below are related to code readability, modularity, and
extensibility. We facilitate community code development and code review, we follow closely, but
not exactly, the Google C++ coding style (https://google.github.io/styleguide/cppguide.html). The
Amanzi’s version of the coding style is located here

doc/standards/cxx/cppguide.html

for more detail. In this section, we describe high-level principles and elaborate some of them in the
subsequent section. We use different fonts to distinguish between a Class name, its Methods(),
and its variables. Global CONSTANTS are capitalized.

Disclaimer. Amanzi’s initial code implementation of new models and algorithms does not always
comply with the formulated design principles, but it is getting there with each code re-factory.

2.1 State

State is a simple data manager. It allows process kernels (PK) to require, read, and write various
variables (such as physical fields). It guarantees data protection by providing both const and non-
const data pointers for variables. It provides some initialization capability – this is where all
independent variables can be initialized – since independent variables are typically owned by the
state, not by a process kernel. A few initialization tools are supported: a space-time function,
initialization from an Exodus file and initialization from an HDF5 file.

2.2 PK and MPC PK

PK stands for the Process Kernel. MPC stands for the Multi-Process Coupler. Each PK and
MPC PK does little actual numerical work. Instead, PK administrates discretization schemes, time
integrators, and solvers. Each PK may represent a single equation (e.g. the Poisson equation for
the Darcy flow) or system of strongly connected equations (e.g. the Navier-Stokes flow).

An MPC PK couples multiple physical processes which have their respected PKs. One example is
the Darcy flow and dispersive transport of chemical components. An MPC PK may often be fully
automated with no knowledge of the underlying PKs. Since an MPC PK has the same interface as a
PK, it is also a process kernel which allows us to build a hierarchy of physical models with various
degree of coupling ranging from a weak coupling to an iterative coupling to a strong coupling.

Much of the work in a PK is delegated to field evaluators, which implement various physical and
mathematical models, such as the equations of state, or boundary conditions, or mesh deforma-
tion. For these reasons, it is appropriate to call them variable evaluators. The available variable
evaluators are classified as follows:

1. Independent variable evaluators are the user-provided functions of spatial and temporal co-
ordinates and has no dependencies. They could be used to compute (analytic or tabulated)
boundary conditions, source terms, and initial conditions.

5 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

2. Primary variable evaluators are related to the fields solved for within a PK. Examples are
pressure and temperature fields. Typically these evaluators are used internally to track
change in fields state and inform the dependency tree about this.

3. Secondary variable evaluators are derived either from primary variable evaluators or other
secondary variables. There are two types of the secondary variable evaluators used to eval-
uate either a single or multiple variables. A model for a secondary variable can be anything
from a constitutive relation to a discrete operator (apply a divergence operator to a velocity
given a mesh and discretization) to a summation operator (add the divergence of Darcy fluxes
to a source term to determine the mass balance). Quite often, the secondary field/variable
evaluators are created by high-level PKs during the setup phase and inserted automatically
in the list of evaluators.

The evaluator is much like a functor or function; it stores no actual data, only meta-data and a
few parameters or constants. It accesses data using a data manager, which controls access for both
read-only and read/write modes.

All evaluators are stored in a dependency graph, which is a directed, acyclic graph (DAG) describ-
ing the functional relationship of each variable in the state. End nodes in the dependency graph
are either independent variables or primary variables. All other nodes in the graph are secondary
variables.

The combination of a data manager and a dependency graph enables dynamic definition of each
variable’s model and data, and splits complex equations into manageable chunks. It also allows
lazy evaluation, where nodes in the graph are updated (re-calculated) only if their dependencies
have changed, resulting in a managed, automated evaluation process with fewer bugs and ineffi-
ciencies. For more details, we refer to ?. A developer may easily modify behavior of evaluators by
overriding virtual member functions. The example below shows implementation of one function
in an abstract product evaluator of type ΠN

i=1f
pi
i where pi is either 1 or -1.

void P r o d u c t E v a l u a t o r : : E v a l u a t e F i e l d (
c o n s t Teuchos : : P t r<S t a t e>& S ,
c o n s t Teuchos : : P t r<Compos i teVec tor>& r e s u l t )

{
auto& r e s u l t c = * r e s u l t −>ViewComponent ( ” c e l l ” ) ;
i n t n c e l l s = r e s u l t c . MyLength ( ) ;

i n t n ( 0 ) ;
r e s u l t c . P u t S c a l a r ( 1 . 0 ) ;
f o r ( auto i t = d e p e n d e n c i e s . b e g i n ( ) ; i t != d e p e n d e n c i e s . end ( ) ; ++ i t ) {

c o n s t auto& f i e l d = *S−>G e t F i e l d D a t a (* i t )−>ViewComponent ( ” c e l l ” ) ;
i f ( powers [ n ] == 1)

f o r ( i n t c = 0 ; c != n c e l l s ; ++c ) r e s u l t c [ 0 ] [ c ] *= f i e l d [ 0 ] [ c ] ;
e l s e i f ( powers [ n ] == −1)

f o r ( i n t c = 0 ; c != n c e l l s ; ++c ) r e s u l t c [ 0 ] [ c ] /= f i e l d [ 0 ] [ c ] ;
n ++;

}
}

6 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

2.3 CompositeVector

Class CompositeVector is an implementation of an improved Epetra MultiVector (from
Trilinos suite of packages) which spans multiple components and knows how to communicate it-
self. A composite vector is a collection of vectors defined on a common mesh and communicator.
Each vector, or component, has a name (typically, a mesh entity) and a number of degrees of
freedom. This meta data is stored in class CompositeVectorSpace. For instance, the field
total component concentration is the cell-centered field with as many degrees of freedom as there
exist chemical components.

Ghost cell updates are managed by the class CompositeVector. Design of the parallel com-
munication strategy is driven by two observations:

• The need for updated ghost cell information is typically known by the user just prior to being
used, not just after the master values are updated.

• Occasionally multiple functions need ghost values, but no changes to owned data have been
made between these functions. However, it is not always possible for the second call to
know, for certain, that the first call did the communication. Versatility means many code
paths may be followed.

2.3.1 Parallel communications

To avoid unnecessary parallel communication the following algorithms were implemented but are
not active now. This may change in the future.

Each time the vector values are changed, an internal flag is marked to record that the ghost values
are stale. Each time ghost cells are needed, that flag is checked and communication is done, if
needed. Keeping this flag correct is therefore critical. To do this, access to vectors must follow the
rigid pattern. The following modifications tag the flag:

1. Any of the usual PutScalar(), Apply(), etc methods.

2. Non-const calls of ViewComponent().

3. Call of GatherMasterToGhosted() and ChangedValues().

4. Scatter() called in a non-INSERT mode.

There exist known ways to break this paradigm. One is to store a non-const pointer to the under-
lying Epetra MultiVector. The fix is simple as this: never store a pointer to the underlying
data, just keep pointers to the composite vector itself.

The other one is when one grabs a non-const pointer, calls Scatter(), then changes the values of
the local data. This is the nasty one, because it is both subtle and reasonable usage. When you
access a non-const pointer, the data is flagged as changed. Then you call Scatter() and the data
is flagged as unchanged. Then you change the data from your old non-const pointer, so that the
data is changed, but not flagged. The first fix is to always call ViewComponent() after Scatter()

7 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

and before changing values. Another way to protect yourself is to put non-const references in their
own scope. For instance, the following practice is encourage:
Compos i t eVec to r my cv ;
{ / / unnamed scope f o r my vec

E p e t r a M u l t i V e c t o r& my vec = *my cv . ViewComponent ( ” c e l l ” , f a l s e ) ;
my vec [ 0 ] [ 0 ] = 1 2 ;

} / / c l o s e scope o f my vec

my cv . S c a t t e r M a s t e r T o G h o s t e d ( )

/ / R e f e r e n c e t o my vec i s now gone , so we can no t use i t and screw t h i n g s up !

{ / / unnamed scope f o r my vec
/ / T h i s i s now s a f e !
E p e t r a M u l t i V e c t o r& my vec = *my cv . ViewComponent ( ” c e l l ” , t rue ) ;
my vec [ 0 ] [ 0 ] = my vec [ 0 ] [ g h o s t i n d e x ] + . . .

} / / c l o s e scope o f my vec

The final way to break the parallel machinery is to use const cast() and then change the values.
Const-correctness is your friend. Keep your PKs const-correct, and you will never have this prob-
lem.

Note that the non-INSERT modes of scatter are never skipped because of the flag state, and the flag
is always tagged as changed. This is because subsequent calls with different modes would break
the code.

2.4 TreeVector

The class TreeVector implements a nested, hierarchical data structure that mimics that for PK
hierarchies. It is an extendable collection of composite vectors. This vector allows each physical
PK to use composite vector to store their solution, and allows MPCs to push back vectors in a tree
format.

This class provides the standard vector interface (extended ring algebra) and may be used with
time integrators and nonlinear solvers.

2.5 Linear operators

The idea behind the design of Amanzi operators is to separate three functionalities that are fre-
quently placed in a single class in other C++ packages.

1. Containers of local matrices (classes prefixed with Op) and data layout schemas.

2. Linear operators and elemental operations with them: assembly of a global matrix (e.g.
Jacobian), matrix-vector product, inversion, and calculation of the Schur complement.

3. Discrete PDEs: populate values in local matrices, add nonlinear coefficients, create special-
ized preconditioners, and impose special boundary conditions.

8 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

2.5.1 Op

Class Op * is a container of local matrices. A series of such classes (e.g. Op Cell FaceCell
and Op Cell Schema) handle data layout. The second word in the class name indicates the
container size (the number of mesh cells here). The third word specifies location of degrees of
freedom: in cells and on faces in the first example; specified by a complex schema in the second
example. These are really just structs of vectors of dense matrices of doubles, and simply provide
a type. They are derived from the virtual class Op.

A key concept of an Op is the schema. The old design of the schema includes one enum repre-
senting the dofs associated with the Operator’s domain and range, and one enum for the contained
size. This is a major limitation for implementing complex discretization schemes. Also a single
schema implies that the domain and range of the operator are the same. The new design (which
is backward compatible) includes two schemas that are also more detailed. A the first enum is
replaced with the list of enums to represent various possible collections of degrees of freedom in-
cluding non-standard degrees of freedom as as derivatives and moments. Additional list specifies
multiplicity of these degrees of freedom. The second enum in the new schema specifies (as before)
the geometric entity over which the local matrices are assembled.

Existence of two (simple and complex) schemas provides some flexibility for code development.
For instance, a developed could create surface matrices, and then assemble them into a subsurface
matrix by introducing a new Op class (for surface discretization) with a simple schema. Alterna-
tively, it could be done using the class Op Cell Schema with a complex schema.

The general schema makes it trivial to assemble a global matrix (e.g. in a coupled flow-energy
system) from sub-block operators. Finally, the new schema supports rectangular matrices which is
useful for saddle-point type systems.

Op * works via a visitor pattern. Matrix assembly, Apply(), application of boundary conditions,
and symbolic assembly are implemented by the virtual class Operator calling a dispatch to
the virtual class Op, which then dispatches back to the derived class Operator * so that type
information of both the Operator * (i.e. global matrix info) and the Op * (i.e. local matrix
info) are known.

A container of local matrices (i.e. instantiation of a Op *) can be shared by multiple Operator *.
Sharing is indicated by the variable ops properties. In combination with CopyShadowToMaster()
and Rescale(), a developer has a room for a variety of optimized implementations. The key param-
eters have prefix OPERATOR PROPERTY and described in file Operators Defs.hh.

2.5.2 Operator

An operator represents a map from linear space X to linear space Y . Typically, this map is a linear
map; however, it can be used also to calculate a nonlinear residual. The spaces X and Y are coded
using class CompositeVectorSpace. A few concrete maps X → Y are already implemented
in the code.

Typically the forward operator is applied using only local Ops. The inverse operator typically
requires assembling a matrix, which may represent the entire operator or may be only its Schur
complement.

9 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

The class Operator performs actions summarized in the second bullet above. Amanzi has a
few derived classes such as Operator Cell, Operator Node, Operator FaceCellSff,
where the suffix X indicates the specific map, see class Operator Schema for a general map.
These classes are derived from the virtual class Operator which stores a schema and a pointer
to a global operator.

Concrete maps use the old schema which is an integer variable. Their are now superseded by the
new flexible schema which is a class variable. Each operator stores a list of containers of local
matrices, more precisely a list of pointers to the variables of class Op.

The only potentially confusing part is the use of the visitor pattern (i.e. double dispatch in this
case) to resolve all types. For instance to assemble a matrix, we may use the following pseudocode
/ / Opera tor
AssembleMat r ix ( Ma t r i x A) {

f o r each op {
op−>AssembleMat r ix ( t h i s , M a t r i x A ) ;

}
}

v i r t u a l AssembleMatr ixOp ( O p C e l l F a c e C e l l& op ) {
/ / throw e r r o r , n o t imp lemen ted

}

/ / Op
AssembleMat r ix ( O p e r a t o r * g l o b a l o p , M a t r i x& A) = 0 ;

/ / O p C e l l F a c e C e l l
AssembleMat r ix ( O p e r a t o r * g l o b a l o p , M a t r i x& A) {

g l o b a l o p −>AssembleMatr ixOp (* t h i s , A ) ;
}

/ / O p e r a t o r F a c e C e l l
AssembleMatr ixOp ( O p C e l l F a c e C e l l& op , Ma t r i x& A) {

/ / T h i s method now know bo th l o c a l schema and t h e m a t r i x ’ s do f s ,
/ / and a s s e m b l e s t h e f a c e+ c e l l l o c a l m a t r i c e s i n t o t h e m a t r i x .

}

The reason for the double dispatch is to get the types specifically without a ton of statements like
this one ”if (schema == schema1) { assemble one way } else { assemble another way}”.

2.5.3 PDE

A ”discrete” PDE consists of (a) a single global operator, (2) an optional global assembled matrix,
and (3) an un-ordered additive collection of lower-rank (or equal rank) local operators, hereafter
called ops. During its construction, a PDE can grow by assimilating more ops. The global operator
knows how (a) to perform the matrix-vector product, the corresponding function is called Apply(),
and (b) to assemble ops into a global matrix. Each PDE * class knows how to apply boundary
conditions and to create a preconditioner.

The classes PDE Diffusion, PDE Advection,PDE Accumulation, etc create operators of
the specified type (for instance Operator FaceCell or Operator Schema), populate their

10 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

values, and apply boundary conditions. They are in some sense physics based generalization of
operators and may perform complex actions such as an approximation of Newton correction terms.

A collection of PDEs that store a pointer to the same global operator form an additive PDE. Appli-
cation of boundary conditions is done independently by each PDE in this collection. The result is
gathered into a single right-hand side vector.

Discretization of a simple PDE (i.e. diffusion) is not done directly. Instead, a helper class that
contains methods for creating and populating the ops within the Operator is used. The helper
class can be used to discretize a simple PDE, such as the diffusion equation. A more complex
PDE, such as the advection-diffusion equation, can be discretized by creating two ”discrete” PDEs
for diffusion and advection processes.

2.6 TreeOperator

Class TreeOperator is the block analogue of linear operators and provides a linear operator
acting on a TreeVectorSpace. In short, it is a matrix of operators. Currently this structure is
used for things like multiphase flows, thermal Richards, coupled matrix-fracture flow and transport,
etc.

2.7 Linear solvers

Native and third-party solvers are handled through a single factory and the uniform interface.
Direct and iterative solvers from Trilinos is a part of this factory. Native re-implementation of
some iterative solvers supplied by Trilinos is due to lack of capabilities needed for subsurface
solvers. One example is the neccisety to perform at least one iteration even when a norm of the
linear residual is below the requested tolerance.

2.8 Nonlinear solvers

A factory of nonlinear solvers includes sever solvers ranging from the Newton method to inexact
Newton methods to continuation methods. The solvers are templated on classes Vector and
VectorSpace.

The nonlinear Krylov accelerator solvers ? implements inexact Newton’s method, where the cor-
rection equation of Newton’s method is only approximately solved because the Jacobian matrix
is approximated and/or the linear system is not solved exactly. Placed in the iteration loop, this
black-box accelerator listens to the sequence of inexact corrections and replaces them with accel-
erated corrections; the resulting method is a type of accelerated inexact Newton method. Note that
an inexact Newton iteration is merely a standard fixed point iteration for a preconditioned system,
and so this accelerator is more generally applicable to fixed point iterations.

11 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

3 Selected Amanzi libraries

This section describes selected Amanzi libraries, their limitations and possible ways for extensions.

3.1 WhetStone

This library implements primarily local matrices for various discretizations frameworks including
finite volumes, nonlinear finite volumes, mimetic finite differences, virtual elements, and discon-
tinuous Galerkin. Conceptual design of a part of the library is presented in Fig. ??. Classes derived
from class MFD3D cover a huge spectrum of PDEs.

The library is under extensive development. At the moment, there exist both a unified approach
to discretization schemes of arbitrary order and the optimized implementation of the low-order
schemes.

Additional functionality included in this library supports

1. the ring algebra of scalar, vector and matrix polynomials;

2. quadrature rules on simplices;

3. numerical integration algorithms based on the Euler homogeneous theorem;

4. coordinate transformations including parameterization of mesh faces and edges.

A few comments on the design principles. Polynomial coefficients are represented by a linear
array. A polynomial iterator class allow us to access information about monomial terms of a given
polynomial in a for-type loop:
P o l y n o m i a l po ly ( 3 , 2 ) ;
f o r ( auto i t = po ly . b e g i n ( ) ; i t < po ly . end ( ) ; ++ i t ) {

i n t i = i t . P o l y n o m i a l P o s i t i o n ( ) ;
i n t k = i t . MonomialSetOrder ( ) ;
c o n s t i n t * i d x = i t . m u l t i i n d e x ( ) ;
double c i = po ly ( i ) ;

}

Each step of this loop extracts information about monomial ci xidx0yidx1zidx2 of degree k = idx0+
idx1 + idx2 in a quadratic polynomial.

Quadrature rules on simplexes have positive weights for stability of numerical schemes. Integration
formulas based on Euler’s homogeneous theorem can be used for integrating polynomials over
polytopal cells. To integrate polynomial and non-polynomial functions using a single interface a
simple base class WhetStoneFunction is used.

Coordinate transformation allows us to treat a 3D mesh face as a 2D polygon. This is used in (a)
hierarchical construction of high-order virtual element and mimetic schemes, and (b) projection of
polynomials on a low-dimension manifold and an reserve (non-unique) lifting operation.

Finally this library contains a factory of discretization schemes that could be extended by includ-
ing users schemes via a simple interface. Example of such an extension is available in directory
operators/test.

12 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Figure 1: Partial dependency tree for library WhetStone.

13 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

3.2 Operators

This is a high-level library that supports global matrices and various assembly patterns. Concep-
tual design of a part of this library is presented in Fig. ??. Classes derived from a helper class
PDE HelperDiscretization cover a range of parabolic and hyperbolic problems.

Additional functionality included in this library supports

1. cell-based remap schemes;

2. upwind algorithms for cell-centered fields;

3. reconstruction of slopes from cell-based data and their limiting.

To create a preconditioner from an assembled matrix, we need a contiguous vector space. Two
classes SuperMapLumped and SuperMap in directory data structures takes non-conti-
guous data structures, such as the CompositeVector and TreeVector and converts them
into a single map. Unfortunately, un-rolling vectors requires to copy data using functions described
in OperatorUtils.hh.

This library was re-factored a few times. Implementation of new schemes, most certainly will
require an additional re-factory; however, backward compatibility should be preserved.

Figure 2: Partial dependency tree for library Operators.

14 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

3.3 Data structures

This library describes parallel vectors used in Amanzi. This includes classes CompositeVector
and TreeVector described above. Additional functionality includes implementation of algo-
rithms that close shortcomings of various Trilinos interfaces. For instance, from a user perspective,
parallel communications should be the integral part of a parallel vector. This is done via Amanzi’s
wrapper classes CompositeVector and TreeVector.

Classes GraphFE, and MatrixFE provides capabilities for better assembly practices for Epetra-
based implementations. They provide a plausibly scalable matrix for use in FE-like systems, where
assembly must be done into rows of ghost entities as well as owned entities. These classes uses
the ”construct, insert, complete fill” paradigm of all Epetra graphs and CRS matrices. The only
real difference is the use of InserMyIndices() and SumIntoMyValues() which may now take local
indices from the ghosted map, not the true row map.

3.4 PKs

This library provides plausibly abstract classes for implementation of boundary conditions and
source terms in the physical PKs, see Fig. ??.

Multiple subdirectories contain implementation of various process kernels and MPC PKs. A PK
factory is used for self-registering of PKs from the global input spec. To register an new PK,
the developer must add a private, static member of type RegisteredPKFactory to the class
declaration, and write a special reg.hh file that instantiates the static registry:
/ / p k i m p l e m e n t a t i o n . hh
# i n c l u d e ”PK . hh ”
# i n c l u d e ” PK Fac to ry . hh ”
c l a s s DerivedPK : p u b l i c Amanzi : : PK {

p r i v a t e :
s t a t i c Amanzi : : R e g i s t e r e d P K F a c t o r y<DerivedPK> f a c t o r y ;

} ;

/ / p k i m p l e m e n t a t i o n r e g . hh
# i n c l u d e ” p k i m p l e m e n t a t i o n . hh ”
template<>
Amanzi : : R e g i s t e r e d P K F a c t o r y<DerivedPK> DerivedPK : : f a c t o r y ( ” pk un iq ue i d ” ) ;

Each PK must implement the standard PK interface, as well as interfaces to either an explicit
time integrator or an implicit solver. A few comments are below, see the code for the complete
description of these interfaces:

• Function Setup() is used to create fields (e.g. pressure), field evaluators (e.g. water content),
and variables (e.g. absolute permeability) and to register them with the state. This func-
tion should avoid any initialization work unless it is really needed for the state registration
process.

• Function Initialize() is used to initialize primary state fields for the PK, and miscalleneous
structures for discrete PDE operators, time integrators, boundary conditions, source terms,
etc.

15 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

• Function AdvanceStep() is used to advance PK from time one timestep to another. For an
implicit time discretization, it calls an implicit solver. For an explicit time discretization, it
calls a Runge-Kutta solver or any other ODE integrator.

• Function CommitStep() is used to update any needed secondary variables at the next time
slice under assumption that the timestep was sucessful.

• Function FunctionalResidual() is a part of the implict solver interface. It computes the non-
linear functional at the given solution approximation.

• Function ModifyPredictor() is a part of the implict solver interface. It modifies optionally
the extrapolated guess for the predictor that is going to be used as a starting value for the
nonlinear solve in the time integrator.

• Function FunctionalTimeDerivative() is a part of the explicit time integration interface. It
calculates the right-hand side of an ODE system at the given state vector.

3.4.1 Setup

The following example shows how to register the evaluator that computes the total water content.
First, we define a key for the field to avoid usage of hard-coded names in the code. The key takes a
name of a computational domain and the field name. Next, we populate names of the dependends
fields: pressure, saturation, and porosity. Finally, we create a secondary variable field evaluator
and link it to the field name.
Key wc key = Keys : : getKey ( domain , ” w a t e r c o n t e n t ” ) ;

S−>R e q u i r e F i e l d ( wc key , wc key)−>SetMesh ( mesh)−>S e t G h o s t e d ( t rue )
−>SetComponent ( ” c e l l ” , AmanziMesh : : CELL , 1 ) ;

Teuchos : : P a r a m e t e r L i s t e l i s t ;
e l i s t . s e t<s t d : : s t r i n g >(” p r e s s u r e key ” , p r e s s u r e k e y )

. s e t<s t d : : s t r i n g >(” s a t u r a t i o n key ” , s a t u r a t i o n l i q u i d k e y )

. s e t<s t d : : s t r i n g >(” p o r o s i t y key ” , p o r o s i t y k e y ) ;

auto e v a l = Teuchos : : r c p ( new VWContentEvalua tor ( e l i s t ) ) ;
S−>S e t F i e l d E v a l u a t o r ( w a t e r c o n t e n t k e y , e v a l ) ;

3.4.2 Boundary conditions

To help implementing boundary conditions, this library provides a few helper classes derived from
the base class PK DomainFunction. Each PK has typically its own boundary class derived
(optionally) from the base class, e.g. FlowBoundaryFunction. This class parses the XML
sublist boundary conditions and creates distributed arrays with boundary data. The key variable is
typically named bcs and can be found in a main PK class. Explicit Transport uses bcs directly.
Other PKs take bcs and populate mesh-size arrays (see class BCs) in order to use operators’
machinery for imposing boundary conditions.

16 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Figure 3: Partial dependency tree for library PKs.

17 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Another approach to imposing simple boundary condition is useful for unit tests:
/ / g e t mesh maps w i t h g h o s t s e n t i t i e s
c o n s t auto& fmap = mesh−>f ace map ( t rue ) ;
c o n s t auto& bmap = mesh−>e x t e r i o r f a c e m a p ( t rue ) ;

/ / l oop over boundary f a c e s
f o r ( i n t bf = 0 ; b f < bmap . NumMyElements ( ) ; ++ bf ) {

/ / l o c a l boundary f a c e i d −> g l o b a l f a c e i d −> l o c a l f a c e i d
i n t f = fmap . LID ( bmap . GID ( b f ) ) ;
c o n s t P o i n t& xf = mesh−> f a c e c e n t r o i d ( f ) ;
. . .

}

18 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

3.5 General purpose factory

In many cases, the developer may have multiple options that inherit a common (likely purely)
virtual class. For instance, many implementations of the equations of state class will provide a
basic method for ρ(T, p), including both real ”fits” to data, analytic expressions, and fake EOS
classes for testing. We would like to be able to:

• choose the implementation at run time

• easily add new implementations

To do the first, we use a factory design pattern. Like most factories, an implementation must be
”registered” with the factory. To do the second, this registration must NOT be done in the factory’s
source code itself.

This is made a little easier by the fact that nearly all of these things will be constructed using a
single interface for the constructor, which (explicitly) takes a single argument – a variable of class
ParameterList – and parses that list for its actual parameters. While it is usually a good idea
to have a factory take the input list, do the parsing, and call the model’s constructor with the param-
eters, that would require every model implementation to have its own factory. To simply things for
scientists writing these models, we choose to do the parsing within the constructor/initialization.

The obvious exception to this is the model type parameter, which must get read by a factory and
mapped to an implementation’s constructor.

The general purpose factory is templated to take a single base class. Implementations of that base
class then ”register” themselves with the factory instance (which is stored statically since we cannot
correctly manage the cleanup). This factory assumes all constructors for all implementations of all
base classes take a single variable of class ParameterList as an argument. An EOS example:
/ / e o s f a c t o r y . cc ( no . hh f i l e n e c e s s a r y )
# i n c l u d e ” eos . hh ” / / header f o r c l a s s EOS , a p u r e l y v i r t u a l base c l a s s
# i n c l u d e ” f a c t o r y . hh ” / / t h i s f i l e
t emplate <> F a c t o r y<EOS> : : map type * F a c t o r y<EOS> : : map ; / / e x p l i c i t l y

/ / i n s t a n t i a t e t h e
/ / s t a t i c r e g i s t r y

/ / e o s i m p l e m e n t a t i o n . hh
# i n c l u d e ” eos . hh ”
c l a s s DerivedEOS : p u b l i c EOS {

DerivedEOS ( Teuchos : : P a r a m e t e r L i s t& p l i s t ) ;

p r i v a t e :
s t a t i c R e g i s t e r e d F a c t o r y <EOS , DerivedEOS> f a c t o r y ; / / my f a c t o r y

} ;

/ / p k u s i n g a n e o s . cc
# i n c l u d e ” eos . hh ”

void i n i t ( . . . ) {
F a c t o r y<EOS> e o s f a c t o r y ;
my eos = e o s f a c t o r y . C r e a t e I n s t a n c e ( ” m y e o s t y p e ” , e o s p l i s t ) ;

}

19 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

4 From first-time users of Amanzi

The purpose of this section is to describe first-hand experience in solving square systems using
Amanzi. Square systems are those that can be written as

Find u ∈ V : ∀v ∈ V a(u, v) = f(v). (4.1)

The types of problems these systems include well-known differential systems like Poisson, advection-
diffusion, magneto- and electro-statics. In summary, the process of solving these types of systems
is as follows, begin by creating a mesh using the MeshFactory, then create a class for your
PDE type as a derived class from PDE HelperDiscretization, this will give access to a
container for local matrices and a global operator that assembles these matrices as well as routines
for applying Dirichlet-type boundary conditions. Thus, the next step is to populate the entries in
the container for mass matrices, then assemble the global system and the right-hand side and apply
a linear solver.

4.1 Defining your PDE class

The PDE class defined must be a derived class of PDE HelperDiscretization, this immediately
gives new class access to two important variables, a global operator and a container for local
matrices and a series of useful routines to apply boundary conditions, assemble global systems,
etc. This all comes with a caveat: you must define a member function called it UpdateMatrices()
which is usually used to populate the local matrices, failure to do so will result in an abstract class
with no possibility for instantiation. The header for a class to solve the Poisson equation in second
order form will look like
c l a s s PDE SecondOrderPoisson : p u b l i c P D E H e l p e r D i s c r e t i z a t i o n {

p u b l i c :
PDE SecondOrderPoisson ( c o n s t Teuchos : : RCP<c o n s t AmanziMesh : : Mesh>& mesh ) ;
˜ PDE SecondOrderPoisson ( ) {} ;

/ / p o p u l a t e c o n t a i n e r o f l o c a l m a t r i c e s
v i r t u a l
vo id U p d a t e M a t r i c e s ( c o n s t Teuchos : : P t r<c o n s t Compos i teVec tor>& u ,

c o n s t Teuchos : : P t r<c o n s t Compos i teVec tor>& p ) ;

/ / p o s t p r o c e s s i n g : c a l c u l a t e f l u x u from p o t e n t i a l p
v i r t u a l
vo id UpdateF lux ( c o n s t Teuchos : : P t r<c o n s t Compos i teVec tor>& p ,

c o n s t Teuchos : : P t r<Compos i teVec tor>& u ) ;

/ / a c c e s s o r s
Teuchos : : RCP<Compos i t eVec to rSpace> GetCVS ( ) { re turn c v s ; }

p u b l i c :
Teuchos : : RCP<Compos i t eVec to rSpace> c v s ;

} ;

20 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Notice that in this class we have, additionally, defined a composite vector space as a class variable.
Composite vector spaces are factories for composite vectors which is an enhanced EPetra Multi-
Vector. This factory can help us create vectors for our trial or test spaces which in the case of a
square system are the same or at least have the same set of degrees of freedom. In what follows we
will explain how to define the global operator, we note that this is all done in the constructor of the
PDE class.

4.1.1 Constructing the local stiffness matrix

We will approximate, for a cell P , the bilinear form a as

aP (p, q) :=

∫
P

∇p · ∇q ≈ pI ·MP q
I (4.2)

where the superscript I refers to the vector of degrees of freedom of p and q. The matrix M is
given by

MP = R(RTN)†RT + λ(I −N(NTN)−1NT ), λ =
2

#nodes
tr
(
R(RTN)†RT

)
, (4.3)

for

N =


1 xv1 − xP yv1 − yP
1 xv2 − xP yv2 − yP
1 xv3 − xP yv3 − yP
1 xv4 − xP yv4 − yP

 R =
1

2


0 |e4|n(4)

x + |e1|n(1)
x |e4|n(4)

y + |e1|n(1)
y

0 |e1|n(1)
x + |e2|n(2)

x |e1|n(1)
y + |e2|n(2)

y

0 |e2|n(2)
x + |e3|n(3)

x |e2|n(2)
y + |e3|n(3)

y

0 |e3|n(3)
x + |e4|n(4)

x |e3|n(3)
y + |e4|n(4)

y

 (4.4)

where {(xvi , yvi) : 1 ≤ i ≤ 4} is the set of vertices of the rectangle P ,
{(

n
(i)
x , n

(i)
y

)
: 1 ≤ i ≤ 4

}
makes a set of outward normal vectors to the edges of P . This derivation is an example of a
mimetic method presented in chapter 4 of ?.

4.1.2 Populating the local matrices and defining the global operator

The first step in populating the local matrices is to define a schema. There should be one schema
for the test space and one for the trial space, in the case of square systems the same can be used
for both. Schemas define the different aspects of a variable and its discretization. Schemas require
two inputs: the base and and an item. The base describes what type of assembly is required for this
variable the choices include cells, faces, edges and nodes all part of the AmanziMesh namespace.
Selecting, for example, faces as the base will imply that the local matrices are associated with the
faces of the mesh. Moreover, item defines the type of degrees of freedom that are used to discretize
the variable in question. Items require three inputs: a part of the topology of the mesh like a node
or an edge which defines where the degrees of freedom are placed, the type of quantity the degree
of freedom, whether it is scalar of vector valued and the number of degrees of freedom of this type.
For a classic finite element method to solve the Poisson equation the definition of its schema will
look something like

21 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Schema p schema ;
/ / t h e a s s e m b l y s h o u l d run over t h e c e l l s t h u s i t s base are t h e c e l l s
p schema . Se tBase ( AmanziMesh : : CELL ) ;

/ / t h e p r e s s u r e d o f s are c e l l −based and s c a l a r s
p schema . AddItem ( AmanziMesh : : NODE, WhetStone : : DOF Type : : SCALAR, 1 ) ;
p schema . F i n a l i z e ( mesh ) ; / / computes t h e s t a r t i n g p o s i t i o n o f t h e d o f i d s

Feeding the mesh to the schema, as shown in the last step, will create important variables used in
the eventual assembly. Once the necessary schemas are defined the local operator can be initialized
and populated in a fairly straight-forward way. It is a matter of feeding the schemas to the local
operator and defining the necessary matrices. For example:
l o c a l o p = Teuchos : : r c p ( new Op Cel l Schema ( p schema , p schema , mesh ) ) ;
/ / p o p u l a t e t h e l o c a l m a t r i c e s
f o r ( i n t c = 0 ; c < n c e l l s o w n e d ; c ++) {

Mcel l ( 0 , 0 ) = 3 , Mcel l ( 0 , 1 ) = −1 , Mcel l ( 0 , 2 ) = −1 , Mcel l ( 0 , 3 ) = −1;
Mcel l ( 1 , 0 ) = −1 , Mcel l ( 1 , 1 ) = 3 , Mcel l ( 1 , 2 ) = −1 , Mcel l ( 1 , 3 ) = −1;
Mcel l ( 2 , 0 ) = −1 , Mcel l ( 2 , 1 ) = −1 , Mcel l ( 2 , 2 ) = 3 , Mcel l ( 2 , 3 ) = −1;
Mcel l ( 3 , 0 ) = −1 , Mcel l ( 3 , 1 ) = −1 , Mcel l ( 3 , 2 ) = −1 , Mcel l ( 3 , 3 ) = 3 ;
l o c a l o p −>m a t r i c e s [ c ] = Mcel l ;

}

The above demostrates how one can take an existing matrix and update the local operator. In
practice one must also build the required matrix. Initally, say to define the matrix in (??) one
requires to find geometric features of the mesh like the coordinates of the nodes, the length of
edges or vectors that are orthogonal to the boundary of a cell. All of these can be attained from the
mesh class from the commands displayed below
AmanziMesh : : E n t i t y I D L i s t node ids , e d g e i d s ;
AmanziMesh : : E n t i t y I D node0 , node1 , node2 , node3 ;
AmanziGeometry : : P o i n t v0 , v1 , v2 , v3 ;
AmanziGeometry : : P o i n t n0 , n1 , n2 , n3 , vP ;
double l0 , l1 , l2 , l 3 ;

vP = mesh −> c e l l c e n t r o i d ( c ) ;
mesh−> c e l l g e t e d g e s ( c , &e d g e i d s ) ;

mesh −>e d g e g e t n o d e s ( e d g e i d s [ 0 ] , &node0 , &node1 ) ;
mesh −>e d g e g e t n o d e s ( e d g e i d s [ 1 ] , &node1 , &node2 ) ;
mesh −>e d g e g e t n o d e s ( e d g e i d s [ 2 ] , &node2 , &node3 ) ;

mesh −>n o d e g e t c o o r d i n a t e s ( node0 , &v0 ) ;
mesh −>n o d e g e t c o o r d i n a t e s ( node1 , &v1 ) ;
mesh −>n o d e g e t c o o r d i n a t e s ( node2 , &v2 ) ;
mesh −>n o d e g e t c o o r d i n a t e s ( node3 , &v3 ) ;

l 0 = mesh −>e d g e l e n g t h ( e d g e i d s [ 0 ] ) ;
l 1 = mesh −>e d g e l e n g t h ( e d g e i d s [ 1 ] ) ;
l 2 = mesh −>e d g e l e n g t h ( e d g e i d s [ 2 ] ) ;
l 3 = mesh −>e d g e l e n g t h ( e d g e i d s [ 3 ] ) ;

n0 = mesh −> f a c e n o r m a l ( e d g e i d s [ 0 ] , f a l s e , c ) ;
n1 = mesh −> f a c e n o r m a l ( e d g e i d s [ 1 ] , f a l s e , c ) ;

22 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

n2 = mesh −> f a c e n o r m a l ( e d g e i d s [ 2 ] , f a l s e , c ) ;
n3 = mesh −> f a c e n o r m a l ( e d g e i d s [ 3 ] , f a l s e , c ) ;

Notice that to attain normal vectors we use the command face normal this is because in amanzi
faces and edges are the same entity in two dimensions. Next, we will construct the matrices N and
R as defined in (??). They will be instances of the class DenseMatrix in the WhetStone namespace.
This will give us access to important member functions that perform standard operations in linear
algebra like inverting or multiplying matrices. Their construction is:
WhetStone : : DenseMat r ix N( 4 , 3 ) ;
WhetStone : : DenseMat r ix R ( 4 , 3 ) ;

N( 0 , 0 ) = 1 , N( 0 , 1 ) = v0 [ 0 ] − vP [ 0 ] , N( 0 , 2 ) = v0 [ 1 ] − vP [ 1 ] ;
N( 1 , 0 ) = 1 , N( 1 , 1 ) = v1 [ 0 ] − vP [ 0 ] , N( 1 , 2 ) = v1 [ 1 ] − vP [ 1 ] ;
N( 2 , 0 ) = 1 , N( 2 , 1 ) = v2 [ 0 ] − vP [ 0 ] , N( 2 , 2 ) = v2 [ 1 ] − vP [ 1 ] ;
N( 3 , 0 ) = 1 , N( 3 , 1 ) = v3 [ 0 ] − vP [ 0 ] , N( 3 , 2 ) = v3 [ 1 ] − vP [ 1 ] ;

R( 0 , 0 ) = 0 , R( 0 , 1 ) = l 3 *n3 [ 0 ] + l 0 *n0 [ 0 ] , R( 0 , 2 ) = l 3 *n3 [ 1 ] + l 0 *n0 [ 1 ] ;
R( 1 , 0 ) = 0 , R( 1 , 1 ) = l 0 *n0 [ 0 ] + l 1 *n1 [ 0 ] , R( 1 , 2 ) = l 0 *n0 [ 1 ] + l 1 *n1 [ 1 ] ;
R( 2 , 0 ) = 0 , R( 2 , 1 ) = l 1 *n1 [ 0 ] + l 2 *n2 [ 0 ] , R( 2 , 2 ) = l 1 *n1 [ 1 ] + l 2 *n2 [ 1 ] ;
R( 3 , 0 ) = 0 , R( 3 , 1 ) = l 2 *n2 [ 0 ] + l 3 *n3 [ 0 ] , R( 3 , 2 ) = l 2 *n2 [ 1 ] + l 3 *n3 [ 1 ] ;

Finally, all that we have left in order to construct the local stiffness matrices is to perform the
operators in (??). To do this we will define a series of temporary variables that store the variables
in between.
WhetStone : : DenseMat r ix TR ( 3 , 4 ) ;
WhetStone : : DenseMat r ix Mcel l ( 4 , 4 ) , S c e l l ( 4 , 4 ) ;
WhetStone : : DenseMat r ix temp1 ( 3 , 3 ) , temp2 ( 4 , 3 ) ;

/ / f o r m u l a : R ( R ˆ TN ) ˆ t R ˆ T+lambda *( Id −N(Nˆ TN)ˆ{ −1}Nˆ T ) / 2
/ / lambda = t r ( R ( R ˆ TN ) ˆ t R ˆ T )

/ / t h e f i r s t summand .
temp1 . M u l t i p l y (R , N, t rue ) ;
temp1 . I n v e r s e M o o r e P e n r o s e ( ) ;
temp2 . M u l t i p l y (R , temp1 , f a l s e ) ;
TR . T r a n s p o s e (R ) ;
Mcel l . M u l t i p l y ( temp2 , TR , f a l s e ) ;

/ / t h e second summand .
double lambda = Mcel l . T race ( ) ;
temp1 . M u l t i p l y (N, N, t rue ) ;
temp1 . InverseSPD ( ) ;
temp2 . M u l t i p l y (N, temp1 , f a l s e ) ;
TR . T r a n s p o s e (N ) ;
S c e l l . M u l t i p l y ( temp2 , TR , f a l s e ) ;

S c e l l *= −lambda / 2 ;
f o r ( i n t i = 0 ; i < 4 ; i ++) S c e l l ( i , i ) += lambda / 2 ;
l o c a l o p −>m a t r i c e s [ c ] = Mcel l + S c e l l ;

The nested for loops that are performed towards the end of the above code are intended to substract
the identity while simultaneously multiplying by lambda.

23 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

To finalize we need to define the global operator which requires us to fist specify a composite
vector space that is consistent with the schema that we defined in the local systems. Thankfully
schema has a routine that does this for us. Thus, initializing the global operator can be done in four
lines as follows:
c v s = Teuchos : : r c p ( new Compos i t eVec to rSpace (

cvsFromSchema ( p schema , mesh , f a l s e ) ) ) ;

/ / c o n s t r u c t o r f o r a g l o b a l o p e r a t o r r e q u i r e s a parame te r l i s t
Teuchos : : P a r a m e t e r L i s t p l i s t = Teuchos : : P a r a m e t e r L i s t ( ) ;

/ / c r e a t e a g l o b a l o p e r a t o r f o r t h e mass m a t r i x
g l o b a l o p = Teuchos : : r c p ( new Opera to r Schema ( cvs , p l i s t , p schema ) ) ;

/ / a s s i g n t h e c o r r e s p o n d i n g c o n t a i n e r o f l o c a l m a t r i c e s
s t d : : s t r i n g my name = ” D i f f u s i o n : P o i s s o n ” ;
l o c a l o p = Teuchos : : r c p ( new Op Cel l Node ( my name , mesh ) ) ;
g l o b a l o p −>OpPushBack ( l o c a l o p ) ;

4.2 Creating a mesh

The class MeshFactory gives the necessary tools to create a mesh. Mesh factory requires some
inputs: the MPI communicator and the preferences which provide the specific capability that is
used. A default communicator is already defined in Amanzi namespace and the preference is
usually set to the MSTK framework.

The mesh factory object can create meshes in several ways depending on the dimensionality (2D
or 3D) and the types of cells. A complete routine to build a simple quadrilateral mesh in 2D will
look like this:
auto comm = Amanzi : : getDefaultComm ( ) ;
MeshFactory f a c t o r y (comm ) ;
f a c t o r y . s e t p r e f e r e n c e ( P r e f e r e n c e ({ Framework : : MSTK} ) ) ;
/ / g e n e r a t e a sq ua re mesh c o v e r i n g [ −1 ,1] x [ −1 ,1] w i t h 9 c e l l s .
Teuchos : : RCP<c o n s t Mesh> mesh = f a c t o r y . c r e a t e ( − 1 . 0 , − 1 . 0 , 1 . 0 , 1 . 0 , 3 , 3 ) ;

4.3 Adding boundary conditions

The class PDE HelperDiscretization has some built-in features to impose boundary con-
ditions but in order to access them we need to define the object of class BCs which takes as
creation arguments the mesh, where the degrees of freedom will be places and the type of degree
of freedom. Moreover, we must also populate the two class variables, bc model which defines
what type of boundary condition we want to prescribe and bc value which precise value of such
boundary condition. For example,
/ / t h e BCs are p l a c e d on t h e nodes and are s c a l a r s
Teuchos : : RCP<BCs> bcv = Teuchos : : r c p ( new BCs (

mesh , AmanziMesh : : NODE, WhetStone : : DOF Type : : SCALAR ) ) ;

24 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

s t d : : v e c t o r<i n t>& bcv model = bcv−>bc model ( ) ;
s t d : : v e c t o r<double>& b c v v a l u e = bcv−>b c v a l u e ( ) ;

P o i n t xv ( 2 ) ; / / a p o i n t w i t h two e n t r i e s
/ / nnode wghos t i s t h e number o f nodes i n t h e mesh i n c l u d i n g g h o s t s
f o r ( i n t v = 0 ; v < nnodes wghos t ; ++v ) {

mesh−>n o d e g e t c o o r d i n a t e s ( v , &xv ) ;
/ / T h i s w i l l i d e n t i f y which p o i n t s l i e i n t h e boundary
i f ( f a b s ( xv [ 0 ] + 1 . 0 ) < 1e −6 | | f a b s ( xv [ 0 ] − 1 . 0 ) < 1e −6 | |

f a b s ( xv [ 1 ] + 1 . 0 ) < 1e −6 | | f a b s ( xv [ 1 ] − 1 . 0 ) < 1e −6) {
bcv model [ v ] = O p e r a t o r s : : OPERATOR BC DIRICHLET ;
b c v v a l u e [ v ] = 1 . 0 ;

}
}

4.4 Assembly and imposing the boundary conditions

Amanzi imposes boundary conditions by placing 1 in the correct place in the global matrix and
adding the value to the right hand side yielding the correct values in the final solution after the
linear solve is performed. Thus, before imposing these conditions we must feed the right hand
side to the object created by our PDE class. This is fairly simple since we already have created a
composite vector space for the functions defined in our schema we can make use of this factory to
initialize the right hand side and manually populate its entries as follows
Compos i t eVec to r s o u r c e ( cvs ) ;
E p e t r a M u l t i V e c t o r& s r c = * s o u r c e . ViewComponent ( ” node ” ) ;
f o r ( i n t v = 0 ; v < nnodes owned ; v ++) {

mesh−>n o d e g e t c o o r d i n a t e s ( v , &xv ) ;
s r c [ 0 ] [ v ] = 1 . 0 ;

}

Next we instantiate our PDE class, feed the right hand side, apply the boundary conditions and
assemble the system
auto o p p o i s s o n = Teuchos : : r c p ( new PDE SecondOrderPoisson ( mesh ) ) ;
o p p o i s s o n −>SetBCs ( bcv , bcv ) ;
o p p o i s s o n −>U p d a t e M a t r i c e s ( Teuchos : : n u l l , Teuchos : : n u l l ) ;
o p p o i s s o n −>ApplyBCs ( true , true , t rue ) ;

/ / g l o b a l a s s e m b l y
Teuchos : : RCP<Opera to r> g l o b a l o p = o p p o i s s o n −>g l o b a l o p e r a t o r ( ) ;
g l o b a l o p −>UpdateRHS ( sou rce , t rue ) ;
g l o b a l o p −>Symbol icAssembleMat r ix ( ) ;
g l o b a l o p −>AssembleMat r ix ( ) ;

4.5 The linear solve

In order to apply a linear solver we must initialize a vector for the solution and initialize the
preconditioner. The linear solve is templated to fit the different types of scenarios where linear
solves are necessary.

25 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

c o n s t Compos i t eVec to rSpace& cvs = * o p p o i s s o n −>GetCVS ( ) ;
Compos i t eVec to r s o l u t i o n ( cvs ) ;
s o l u t i o n . P u t S c a l a r ( 0 . 0 ) ; / / s o l u t i o n i n i t i a l i z e d w i t h t h e v a l u e z e r o

/ / T h i s f i l e c o n t a i n s t h e s p e c i f i c a t i o n s f o r t h e p r e c o n d i t i o n e r
s t d : : s t r i n g xmlFileName = ” t e s t / o p e r a t o r S e c o n d O r d e r P o i s s o n . xml ” ;
Teuchos : : ParameterXMLFi leReader x m l r e a d e r ( xmlFileName ) ;
Teuchos : : P a r a m e t e r L i s t p l i s t = x m l r e a d e r . g e t P a r a m e t e r s ( ) ;
auto s l i s t = p l i s t . s u b l i s t ( ” p r e c o n d i t i o n e r s ” ) . s u b l i s t ( ” Hypre AMG” ) ;
g l o b a l o p −> I n i t i a l i z e P r e c o n d i t i o n e r ( s l i s t ) ;
g l o b a l o p −>U p d a t e P r e c o n d i t i o n e r ( ) ;

auto o l i s t = p l i s t . s u b l i s t ( ” s o l v e r s ” ) . s u b l i s t ( ”PCG” ) . s u b l i s t ( ” pcg p a r a m e t e r s ” ) ;
Amanz iSo lve r s : : L inearOpera torPCG<Opera to r , Compos i teVec tor ,

Compos i t eVec to rSpace> pcg ( g l o b a l o p , g l o b a l o p ) ;

pcg . I n i t ( o l i s t ) ;
Compos i t eVec to r& r h s = * g l o b a l o p −> r h s ( ) ;
i n t i e r r = pcg . A p p l y I n v e r s e ( rhs , s o l u t i o n ) ;

The xml file used above contains the following information
<P a r a m e t e r L i s t name=” s o l v e r s ”>
<P a r a m e t e r L i s t name=”PCG”>
<P a r a m e t e r name=” i t e r a t i v e method ” t y p e =” s t r i n g ” v a l u e =” pcg ” />
<P a r a m e t e r L i s t name=” pcg p a r a m e t e r s ”>
<P a r a m e t e r name=”maximum number o f i t e r a t i o n s ” t y p e =” i n t ” v a l u e =” 20 ” />
<P a r a m e t e r name=” e r r o r t o l e r a n c e ” t y p e =” d oub l e ” v a l u e =” 1e −12 ” />

< / P a r a m e t e r L i s t>
< / P a r a m e t e r L i s t>

< / P a r a m e t e r L i s t>

<P a r a m e t e r L i s t name=” p r e c o n d i t i o n e r s ”>
<P a r a m e t e r L i s t name=” Hypre AMG”>
<P a r a m e t e r name=” d i s c r e t i z a t i o n method ” t y p e =” s t r i n g ” v a l u e =” g e n e r i c mfd ” />
<P a r a m e t e r name=” p r e c o n d i t i o n e r t y p e ” t y p e =” s t r i n g ” v a l u e =” boomer amg” />
<P a r a m e t e r L i s t name=” boomer amg p a r a m e t e r s ”>
<P a r a m e t e r name=” c y c l e a p p l i c a t i o n s ” t y p e =” i n t ” v a l u e =” 2 ” />
<P a r a m e t e r name=” smoothe r sweeps ” t y p e =” i n t ” v a l u e =” 3 ” />
<P a r a m e t e r name=” s t r o n g t h r e s h o l d ” t y p e =” do ub l e ” v a l u e =” 0 . 5 ” />
<P a r a m e t e r name=” t o l e r a n c e ” t y p e =” d oub l e ” v a l u e =” 0 . 0 ” />
<P a r a m e t e r name=” r e l a x a t i o n t y p e ” t y p e =” i n t ” v a l u e =” 6 ” />
<P a r a m e t e r name=” v e r b o s i t y ” t y p e =” i n t ” v a l u e =” 0 ” />

< / P a r a m e t e r L i s t>
< / P a r a m e t e r L i s t>

< / P a r a m e t e r L i s t>

26 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

5 Code development

5.1 Development cycle

Development of a new capability consists of several steps that are summarized below. Some steps
can be skipped during a casual work cycle of code support, bug fixes, and minor improvements.

• Create a new github development branch.

• Create github ticket or multiple tickets that summarize and stage the development process.

• Implement numerical algorithms and add them to an Amanzi library.

• Write unit tests for the new code.

• Integrate new functionality into other algorithms.

• Write integrated unit tests as needed.

• If implemented algorithms take control parameters from an XML file, document these pa-
rameters.

• Test new capability and add a benchmark or verification test to the user guide.

• Create a pull request to inform team members about the new capability and to collect mis-
callenous feedback.

• Merge the development branch into the master branch.

5.2 Smart pointers

We suggest the following guidelines on smart pointers and argument passing.
u n i q u e p t r <X> f a c t o r y ( ) ; / / c r e a t e s an X
void s i n k ( u n i q u e p t r <X>&); / / consumes X , t h e c a l l e r ca nn o t keep X

/ / or use i t a f t e r c a l l
void r e s e a t ( u n i q u e p t r <X>&); / / change which X t h e c a l l e r p o i n t s t o

Teuchos : : RCP<X> f a c t o r y ( ) ; / / c r e a t e s an X
Teuchos : : RCP<X> s h a r e ( ) ; / / t h e c a l l e r w i l l or migh t keep X
void s h a r e ( c o n s t Teuchos : : RCP<X>&); / / t h e c a l l e e w i l l or migh t keep X
void r e s e a t ( Teuchos : : RCP<X>&); / / change which X t h e c a l l e r p o i n t s t o

void o p t i o n a l (X* ) ; / / i f X i s an o p t i o n a l argument , i . e . p o i n t e r can be n u l l

void i f p r i m i t i v e (X ) ; / / i f none o f t h e above apply , and X i s a p r i m i t i v e
void i f n o t p r i m i t i v e (X&); / / i f none o f t h e above apply , and X i s n o t a p r i m i t i v e
X = p r i m i t i v e r e t u r n ( ) ; / / i f p r i m i t i v e
X& = n o n p r i m i t i v e r e t u r n ( ) ; / / i f t h e r e i s no ownersh ip t r a n s f e r i m p l i e d ,

/ / t h e c a l l e r j u s t l o o k s a t ( c o n s t ) or m o d i f i e s
/ / ( n o n c o n s t ) X b u t does n o t keep i t .

27 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Note that X can be replaced by const X with no loss of generality. Note that the key part of this
is that passing by RCP should mean something about ownership, i.e. that the callee might keep
X! This also suggests to NEVER use Teuchos::Ptr, instead using X*. Using Ptr requires that the
object WAS stored in an RCP, and means an object stored in a unique ptr must jump through hoops
to be put in a non-owning Ptr before it can be passed.

28 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

6 Testing

Testing is a cornerstone of modern software development. In the form of Test-Driven Development,
it is useful for providing feedback in the design process. In other forms, it is essential for preventing
the project from descending into chaos, and controlling the cost of software maintenance. In this
section we describe the various forms of testing used to certify that Amanzi works properly, in
order of increasing scope.

6.1 Unit Testing

Each individual software component should have a defined set of assumptions under which it op-
erates, and a set of behaviors and corresponding certifications on what it produces. These assump-
tions and behaviors are ideally articulated in the documentation of the component, but they should
also be tested independently as part of the implementation process. A test of an individual com-
ponent’s assumptions and behaviors is called a unit test. A unit test provides a set of PASS/FAIL
tests for each function, method, and attribute in a software component.

Some Amanzi’s tests are integrated tests that fill a huge gap between short unit tests and long
benchmark tests. At the moment they are also called unit tests.

6.2 Verification and Benchmark Testing

The various algorithms we use in Amanzi have to be tested on the basic subsurface problems that
are relevant to our charter, and compared against other codes to weigh the costs and benefits of our
choices against existing approaches.

A verification test consists of a simulation run with a given input describing a problem that has a
known solution, a characterization of the quality of the solution, and a PASS or FAIL result based
on the quality of that solution measured against some threshold.

A benchmark test is a simulation run with a given input whose output is compared to the output
of one or more other codes. All codes must have inputs that describe the same “benchmark prob-
lem.” The differences between the codes can be evaluated visually and/or with numerical metrics.
Numerical metrics allow benchmark tests to have PASS/FAIL results, whereas a visual inspection
test requires an expert for evaluation, so the former are preferred where practical.

6.3 Regression Testing

A regression test is a simulation-based PASS/FAIL test similar to a verification test, and is typically
part of a large suite of tests that are run automatically and periodically to ensure that bugs and errors
have not been introduced into Amanzi during code development. We provide a couple of tools for
constructing PASS/FAIL tests that can be used to monitor bugs and regressions. In particular, we
support two types of regression tests: smoke tests and comparison tests.

29 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

6.3.1 Smoke tests

A smoke test simply runs an Amanzi simulation with a given input, PASSes if the simulation
runs to completion, and FAILs otherwise. A smoke test can be created (and added to Amanzi’s
regression test suite) by calling the following CMake command inside of a CMakeLists.txt file in
a testing directory:
ADD AMANZI SMOKE TEST(< t e s t n a m e>

INPUT f i l e . xml
[ FILES f i l e 1 ; f i l e 2 ; . . . ; f i l e N ]
[PARALLEL]
[NPROCS p r o c s 1 . . . ]
[ MPI EXEC ARGS arg1 . . . ] )

Arguments:

• test_name: the name given to the comparison test

• INPUT (required): This (required) keyword defines an Amanzi XML input file that will be
run.

• FILES (optional): A list of any additional files that the test needs in order to run in its direc-
tory/environment. These files will be copied from the source directory to the run directory.

• PARALLEL (optional): The presence of this keyword signifies that this is a parallel job. This
is also implied by an NPROCS value ¿ 1

• NPROCS (optional): This keyword starts a list of the number of processors to run the test on,
and defaults to 1.

• MPI_EXEC_ARGS (optional): This keyword denotes extra arguments to give to MPI. It is
ignored for serial tests.

6.3.2 Comparison tests

A comparison test runs an Amanzi simulation with a given input, and then compares a field or an
observation from that simulation to that in the specified reference file, PASSing if the L2 norm of
the difference in the simulation and reference values falls below the given tolerance. One can add
a comparison test to the Amanzi regression test suite by calling the following CMake command
inside of a CMakeLists.txt file within a testing directory:
ADD AMANZI COMPARISON TEST(< t e s t n a m e>

INPUT f i l e . xml
REFERENCE r e f e r e n c e
[ FILES f i l e 1 ; f i l e 2 ; . . . ; f i l e N ]
ABSOLUTE TOLERANCE t o l e r a n c e
RELATIVE TOLERANCE t o l e r a n c e
[ FIELD f i e l d n a m e ]
[OBSERVATION o b s e r v a t i o n n a m e ]
[PARALLEL]
[NPROCS p r o c s 1 . . . ]
[ MPI EXEC ARGS arg1 . . . ] )

30 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

Arguments:

• test_name: the name given to the comparison test

• INPUT (required): This (required) keyword defines an Amanzi XML input file that will be
run.

• REFERENCE The name of the file containing reference data to which the simulation output
will be compared.

• TOLERANCE (required): This specifies the maximum L2 error norm that can be measured
for a successful testing outcome.

• FILES (optional): A list of any additional files that the test needs in order to run in its direc-
tory/environment. These files will be copied from the source directory to the run directory.

• FIELD (required if OBSERVATION not given): The name of the field in Amanzi that will
be compared to its reference value for this test.

• OBSERVATION (required if FIELD not given): The name of the observation in the Amanzi
input that will be compared to its reference value for this test.

• PARALLEL (optional): The presence of this keyword signifies that this is a parallel job. This
is also implied by an NPROCS value ¿ 1

• NPROCS (optional): This keyword starts a list of the number of processors to run the test on,
and defaults to 1.

• MPI_EXEC_ARGS (optional): This keyword denotes extra arguments to give to MPI. It is
ignored for serial tests.

31 ascemdoe.org November 20, 2024



Amanzi: Developers’ Guide

7 Documentation

7.1 User Guide

The description of each test in the user guide uses the structured test format and consists of a few
sections.

1. Introduction describes purpose of the test.

2. Problem Specification describes the physical and mathematical model with the level of de-
tails sufficient to reproduce the results.

3. Results and Comparison summarizes numerical results in a form of plots and tables (e.g.,
drawdown curves). Comparison with analytic data, data produced by other codes, or data
published elsewhere is strongly encouraged.

4. References.

5. About collects technical information for developers that include location of the files, names
of the developers, names of critical files (XML input, Exodus mesh, analytic data, etc),
names of output files.

6. Status describes status of the test and required future work.

To build the user guide a few python modules have to be installed inluding ipython and sphixcontrib
extensions such as bibtex and tikz. Note that on OSX, the tikz extension is usually not available
via MacPorts and has to be installed using pip.

7.2 Native Spec

This is a continuously evolving specification format used by the code developers. Its main purpose
is to develop and test new capabilities without disruption of end-users. The documentation is in
the form of a structured text, see doc/input spec/AmanziNativeSpecV8.rst.

32 ascemdoe.org November 20, 2024


